Skip to main content

The NRL-Blend High Resolution Precipitation Product and its Application to Land Surface Hydrology

  • Chapter
  • First Online:
Satellite Rainfall Applications for Surface Hydrology

Abstract

In this chapter, we discuss the basic workings of the NRL-Blend high-resolution precipitation product, followed by a validation experiment. We employ satellite omissions to the existing (late 2008) constellation of low Earth orbiting satellite platforms to examine the impact of several proxy Global Precipitation Mission (GPM) satellite constellation configurations when used to initialize land surface models (LSM). The emphasis is on how high resolution precipitation products such as the NRL-Blend are affected by such factors as sensor type (conical or across-track scanning) and nodal crossing time, using a collection of GPM proxy datasets gathered over the continental United States. We present results which examine how soil moisture states simulated by the two state-of-the-art land surface models are impacted when forced with the various precipitation datasets, each corresponding to a different proxy GPM constellation configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennartz, R. and P. Bauer, 2003: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci., 38 , 4, 8075, doi:10.1029/2002RS002626.

    Article  Google Scholar 

  • Chen, F., et al., 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 7251–7268.

    Article  Google Scholar 

  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. Kousky, R. Higgins, and J. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113 , D04110, 1–13.

    Google Scholar 

  • Cosgrove, B. A., et al., 2003: Real-time and retrospective forcing in the North American Land data Assimilation System (NLDAS) project. J. Geophys. Res., 108 , 8842, doi: 10.1029/2002JD003118.

    Article  Google Scholar 

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889–1903.

    Article  Google Scholar 

  • Duan, Q. and J. C. Schaake, Jr., 2003: Total water storage in the Arkansas-Red River basin. J. Geophys. Res., 108 , 8853, doi:10.1029/2002JD003152.

    Article  Google Scholar 

  • Ebert, E., C. Kidd, and J. Janowiak, 2007: Comparison of near real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47–64.

    Article  Google Scholar 

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarplay, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 , 8851, doi:10.1029/2002JD003296.

    Article  Google Scholar 

  • GPM, 2008a: GPM Science Serving Society. Global Precipitation Measurement, NASA Goddard Spaceflight Center http://gpm.gsfc.nasa.gov/features/servingsociety.html

  • GPM, 2008b: GPM Science Objectives. Global Precipitation Measurement, NASA Goddard Spaceflight Center http://gpm.gsfc.nasa.gov/science.html

  • Gottschalck, J., J. Meng, M. Rodell, and P. Houser, 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System land surface states. J. Hydrometeor., 6, 573–598.

    Article  Google Scholar 

  • Grayson, R. B., A. W. Western, J. P. Walker, D. D. Kandel, J. F. Costelloe, and D. J. Wilson, 2006: Controls on patterns of soil oisture in arid and semi-arid systems, Chapter 7, in Ecohydrology of Arid and Semi-Arid Ecosystems. Eds. P. D’Ordorico and A. Porporato, Springer, The Netherlands, 341p.

    Google Scholar 

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, Y. Hong, D. B. Wolff, K. Bowman, and E. F. Stocker, 2007: The TRMM multisatellite precipitation analysis (TMPA); Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55.

    Article  Google Scholar 

  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 1176–1190.

    Article  Google Scholar 

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydromet., 5, 487–503.

    Article  Google Scholar 

  • Koster, R. D. and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 108, 2697–2715.

    Google Scholar 

  • Kumar, S. V., C. D. Peters-Lidard, J. L. Eastman, and W. -K. Tao, 2008: An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF. Environ. Model. Soft., 23, 169–181.

    Article  Google Scholar 

  • Mitchell, K. E., et al., 2004: The multi-institution North American land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109 , D07S90, doi: 10.1029/2003JD003823.

    Article  Google Scholar 

  • Sapiano, M. R. P. and P. A. Arkin, 2008: An inter-comparison and validation of high resolution satellite precipitation estimates with three-hourly gauge data. J. Hydromet., in press. doi: 10.1175/2008JHM1052.1.

    Google Scholar 

  • Schaake, J. C., et al., 2004: An intercomparison of soil moisture fields in the North American Land data Assimilation System (NLDAS). J. Geophys. Res., 109 , D01S90, doi:10.1029/2002JD003309.

    Article  Google Scholar 

  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 1870–1884.

    Article  Google Scholar 

  • Surussavadee, C. and D. H. Staelin, 2008: Rain and snowfall retrievals at high latitudes using millimeter wavelengths, Proc IGARSS 2008, 6–11 July, Boston.

    Google Scholar 

  • Turk, J. and P. Bauer, 2006: The international precipitation working group and its role in the improvement of quantitative precipitation measurements. Bull. Amer. Meteor. Soc., 87, 643–647.

    Article  Google Scholar 

  • Turk, F. J. and S. Miller, 2005: Toward improving estimates of remotely-sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Rem. Sens., 43, 1059–1069.

    Article  Google Scholar 

  • Turk, F. J., P. Arkin, E. Ebert, and M. Sapiano, 2008: Evaluating High Resolution Precipitation Products. Bull. Amer. Meteor. Soc., December issue.

    Google Scholar 

  • Vicente, G., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 1883–1898.

    Article  Google Scholar 

  • Vicente, G., J. C. Davenport, and R. A. Scofield, 2002: The role of orography and parallax correction on real time high resolution satellite rainfall estimation. Int. J. Remote Sens., 23, 221–230.

    Article  Google Scholar 

  • Weymouth, G., G. A. Mills, D. Jones, E. E. Ebert, and M. J. Manton, 1999: A continental-scale daily rainfall analysis system. Aust. Meteorol. Mag., 48, 169–179.

    Google Scholar 

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd Ed. Elsevier, New-York, NY, 627 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Turk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Turk, J.T., Mostovoy, G.V., Anantharaj, V. (2010). The NRL-Blend High Resolution Precipitation Product and its Application to Land Surface Hydrology. In: Gebremichael, M., Hossain, F. (eds) Satellite Rainfall Applications for Surface Hydrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2915-7_6

Download citation

Publish with us

Policies and ethics