Skip to main content

CMORPH: A “Morphing” Approach for High Resolution Precipitation Product Generation

  • Chapter
  • First Online:

Abstract

The CMORPH technique was developed to synergize the most desirable aspects of passive microwave (high quality) and infrared (spatial and temporal resolution) data. CMORPH is a global (in longitude; 60°N–60°S) high-resolution (∼0.10° latitude/longitude, 1/2-hourly) precipitation analysis technique that uses motion vectors derived from half-hourly geostationary satellite IR imagery to propagate precipitation estimates derived from passive microwave data. Multi-hour precipitation totals derived via the CMORPH methodology are an improvement over both simple averaging of all available microwave-derived precipitation estimates and over other merging techniques that blend microwave and infrared information but which derive estimates of precipitation directly from infrared data when passive microwave data are not available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ferraro, R. R., 1997: SSM/I derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16715–16735.

    Article  Google Scholar 

  • Ferraro, R. R., F. Weng, N. C. Grody, and L. Zhao, 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27, 269–2672.

    Article  Google Scholar 

  • Gandin, L. S., 1963: Objective analysis of meteorological fields. Leningrad, 1963; translated by Israel Program for Scientific Translations, Jerusalem, 1965.

    Google Scholar 

  • Higgins, R. W., J. E. Janowiak, and Y. Yao, 1996: A gridded hourly precipitation data base for the United States (1963–1993). NOAA/NCEP/Climate Prediction Center Atlas No. 1, U. S. Dept. of Commerce, (available via world-wide-web http://www.cpc.ncep.noaa.gov/products/outreach/research_papers/ncep_cpc_atlas/1/)

  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36, pp.1176–1190.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, D. T. Bolvin, D. Gu, E. J. Nelkin, Y. Hong, D. B. Wolf, K. P. Bowman, and E. F. Stocker, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydromet., 8, 38–55.

    Article  Google Scholar 

  • Janowiak, J. E., R. J. Joyce, and Y. Yarosh, 2001: A real-time global half-hourly pixel-resolution IR dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205–217.

    Article  Google Scholar 

  • Janowiak, J. E., V. D. Dagostaro, V. E. Kousky, and R. J. Joyce, 2007: An examination of precipitation in observations and model forecasts during NAME with emphasis on the diurnal cycle. J. Climate, 20, 1680–1692.

    Article  Google Scholar 

  • Joyce, R., J. Janowiak, and H. Huffman, 2001: Latitudinally and seasonally dependent zenith-angle corrections for geostationary satellite IR brightness temperatures. J. Appl. Meteor., 40, 689–703.

    Article  Google Scholar 

  • Joyce, R., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5(3), 487–503.

    Article  Google Scholar 

  • Kubota, T., S. Shige, H. Hashizume, K. Aonashi, N. Takahashi, S. Seto, M. Hirose, Y. N. Takayabu, K. Nakagawa, K. Iwanami, T. Ushio, M. Kachi, and K. Okamoto, 2007: Global precipitation map using satelliteborne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 2259–2275.

    Article  Google Scholar 

  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sensing, 34, 1213–1232.

    Article  Google Scholar 

  • Kummerow, C., Y. Hong, W. Olson, S. Yang, R. Adler, J. McCollum, R. Ferraro, G. Petty, and T. Wilheit, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801–1820.

    Article  Google Scholar 

  • Li, Q., R. Ferraro, and N. C. Grody, 1998: Detailed analysis of the error associated with the rainfall retrieved by the NOAA/NESDIS SSM/I Rainfall Algorithm: Part I. Tropical oceanic rainfall. J. Geophys. Res., 103, 11419–11427.

    Article  Google Scholar 

  • Lin, Y. and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: development and applications. Preprints, 19th Conf. on Hydrology, American Meteorological Society, San Diego, CA, 9–13 January 2005, Paper 1.2.

    Google Scholar 

  • McCollum, J. R., W. F. Krajewski, R. R. Ferraro, and M. B. Ba, 2002: Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. J. Appl. Meteor., 41, 1065–1080.

    Article  Google Scholar 

  • McCollum, J. R. and R. R. Ferraro, 2003: The next generation of NOAA/NESDIS SSM/I, TMI and AMSR-E microwave land rainfall algorithms. J. Geophys. Res., 108, 8382–8404.

    Article  Google Scholar 

  • Rosenfeld, D. and Y. Mintz, 1988: Evaporation of rain falling from convective clouds as derived from radar measurements. J. Appl. Meteor., 27, 209–215.

    Article  Google Scholar 

  • Scofield, R. A. and R. J. Kuligowski, 2003: Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Mon. Wea. Rev., 18, 1037–1051.

    Google Scholar 

  • Simpson, J. R., R. F. Adler, and G. R. North, 1988: A proposed Tropical Rainfall Measurement Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295.

    Article  Google Scholar 

  • Turk, F. J., G. Rohaly, J. Hawkins, E. A. Smith, F. S. Marzano, A. Mugnai, and V. Levizzani, 2000: Meteorological applications of precipitation estimation from combined SSM/I, TRMM and geostationary satellite data. In: Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere, P. Pampaloni and S. Paloscia Eds., VSP Int. Sci. Publisher, Utrecht (The Netherlands), 353–363.

    Google Scholar 

  • Vicente, G. A., J. C. Davenport, and R. Scofield, 2002: The role of orographic and parallax correction on real time high resolution satellite rainfall rate distribution. Int. J. Remote Sens., 10, 221–230.

    Article  Google Scholar 

  • Vila, D., R. Ferraro, and R. Joyce, 2007: Evaluation and improvement of AMSU precipitation retrievals. J. Geophys. Res., 112, D20119, doi:10.1029/2007JD008617.

    Article  Google Scholar 

  • Weng, F., L. Zhao, R. R. Ferraro, G. Poe, X. Li, and N. C. Grody, 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38(4), 8068, doi:10.1029/2002RS002679.

    Article  Google Scholar 

  • Wiheit, T., C. Kummerow, and R. Ferraro, 2003: Rainfall algorithms for AMSR-E. IEEE Trans. Geosci. And Rem. Sens., 41, 204–214.

    Article  Google Scholar 

  • Zhao, L. and F. Weng, 2002: Retrieval of ice cloud properties using the Advanced Microwave Sounding Unit (AMSU). J. Appl. Meteor., 41, 384–395.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Janowiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Joyce, R.J., Xie, P., Yarosh, Y., Janowiak, J.E., Arkin, P.A. (2010). CMORPH: A “Morphing” Approach for High Resolution Precipitation Product Generation. In: Gebremichael, M., Hossain, F. (eds) Satellite Rainfall Applications for Surface Hydrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2915-7_2

Download citation

Publish with us

Policies and ethics