Skip to main content

Insights into the Function of Intermedin/Adrenomedullin 2

  • Chapter
  • First Online:
  • 586 Accesses

Abstract

The hypothalamus/pituitary axis is central to the regulation of neuroendocrine homeostasis in vertebrates. Based on homologous searches of genome sequences, our laboratory and that of Dr. Y. Takei independently discovered intermedin (also known as adrenomedullin 2) as a novel calcitonin/CGRP/amylin/adrenomedullin family peptide. Intermedin is expressed in a variety of tissues and signals through the CLR/RAMP receptor complexes. In addition to having potent effects on the cardiovascular system, intermedin exhibits unique functional characteristics in the regulation of neuroendocrine system and pituitary hormone secretion. Based on physiological and molecular analyses, we proposed that in the pituitary intermedin could function as a prolactin-releasing factor participating in the estrogen-regulated prolactin release during reproduction. While the exact physiological role and the therapeutic potential of this novel peptide remain to be analyzed, recently progress has pointed to pleiotropic roles in diverse physiological systems in humans and other vertebrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACTH:

adrenocorticotropic hormone

ADM:

adrenomedullin

CGRP:

calcitonin gene related peptide

CLR:

calcitonin receptor-like receptor

CRF:

corticotropin releasing factor

GPCR:

G protein-coupled receptor

IMD:

intermedin

MSH:

melanocyte-stimulating hormone

NOS:

nitric oxide synthase

POMC:

proopiomelanocortin

RAMP:

receptor activity modifying protein.

References

  • Allen DL, Low MJ, Allen RG, Ben-Jonathan N (1995) Identification of two classes of prolactin-releasing factors in intermediate lobe tumors from transgenic mice. Endocrinology 136:3093–3099

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244

    Article  PubMed  CAS  Google Scholar 

  • Bomberger JM, Parameswaran N, Hall CS, Aiyar N, Spielman WS (2005a) Novel function for Receptor Activity-modifying Proteins (RAMPs) in post-endocytic receptor trafficking. J Biol Chem 280:9297–9307

    Article  PubMed  CAS  Google Scholar 

  • Bomberger JM, Spielman WS, Hall CS, Weinman EJ, Parameswaran N (2005b) RAMP isoform-specific regulation of adrenomedullin receptor trafficking by NHERF-1. J Biol Chem M501751200

    Google Scholar 

  • Bourdeau V, Deschenes J, Metivier R, Nagai Y, Nguyen D, Bretschneider N, Gannon F, White JH, Mader S (2004) Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol 18:1411–1427

    Article  PubMed  CAS  Google Scholar 

  • Brain SD, Grant AD (2004) Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev 84:903–934

    Article  PubMed  CAS  Google Scholar 

  • Burak Kandilci H, Gumusel B, Wasserman A, Witriol N, Lippton H (2006) Intermedin/adrenomedullin-2 dilates the rat pulmonary vascular bed: dependence on CGRP receptors and nitric oxide release. Peptides 27:1390–1396

    Article  PubMed  CAS  Google Scholar 

  • Caron KM, Smithies O (2001) Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci U S A 98:615–619

    Article  PubMed  CAS  Google Scholar 

  • Chang CL, Roh J, Hsu SY (2004) Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: a comparison with other calcitonin/intermedin family peptides in vertebrates. Peptides 25:1633–1642

    Article  PubMed  CAS  Google Scholar 

  • Chang CL, Roh J, Park J-I, Klein C, Cushman N, Haberberger RV, Hsu SYT (2005) Intermedin (IMD) functions as a pituitary paracrine factor regulating prolactin release. Mol Endocrinol 19:2824–2838

    Article  CAS  Google Scholar 

  • Chauhan M, Yallampalli U, Reed L, Yallampalli C (2006) Adrenomedullin 2 antagonist infusion to rats during midgestation causes fetoplacental growth restriction through apoptosis. Biol Reprod 75:940–947

    Article  PubMed  CAS  Google Scholar 

  • Chauhan M, Ross GR, Yallampalli U, Yallampalli C (2007) Adrenomedullin-2, a novel calcitonin/calcitonin-gene-related peptide family peptide, relaxes rat mesenteric artery: influence of pregnancy. Endocrinology 148:1727–1735

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Kis B, Hashimoto H, Busija DW, Takei Y, Yamashita H, Ueta Y (2006) Adrenomedullin 2 protects rat cerebral endothelial cells from oxidative damage in vitro. Brain Res 1086:42–49

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, Main MJ, Foord SM, Sexton PM (1999) Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 56:235–242

    PubMed  CAS  Google Scholar 

  • Cockcroft JR, Noon JP, Gardner-Medwin J, Bennett T (1997) Haemodynamic effects of adrenomedullin in human resistance and capacitance vessels. Br J Clin Pharmacol 44:57–60

    Article  PubMed  CAS  Google Scholar 

  • Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A 84:8628–8632

    Article  PubMed  CAS  Google Scholar 

  • Cooper GJ, Leighton B, Dimitriadis GD, Parry-Billings M, Kowalchuk JM, Howland K, Rothbard JB, Willis AC, Reid KB (1988) Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc Natl Acad Sci U S A 85:7763–7766

    Article  PubMed  CAS  Google Scholar 

  • Copp DH (1994) Calcitonin: discovery, development, and clinical application. Clin Invest Med 17:268–277

    PubMed  CAS  Google Scholar 

  • Dong F, Taylor MM, Samson WK, Ren J (2006) Intermedin (adrenomedullin-2) enhances cardiac contractile function via a protein kinase C- and protein kinase A-dependent pathway in murine ventricular myocytes. J Appl Physiol 101:778–784

    Article  PubMed  CAS  Google Scholar 

  • Durham PL (2004) CGRP-receptor antagonists – a fresh approach to migraine therapy? N Engl J Med 350:1073–1075

    Article  PubMed  CAS  Google Scholar 

  • Dymshitz J, Ben-Jonathan N (1991) Coculture of anterior and posterior pituitary cells: selective stimulation of lactotrophs. Endocrinology 128:2469–2475

    Article  PubMed  CAS  Google Scholar 

  • Eto T (2001) A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides 22:1693–1711

    Article  PubMed  CAS  Google Scholar 

  • Fisher LA, Kikkawa DO, Rivier JE, Amara SG, Evans RM, Rosenfeld MG, Vale WW, Brown MR (1983) Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide. Nature 305:534–536

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimmons TJ, Zhao X, Wank SA (2003) The extracellular domain of receptor activity-modifying protein 1 is sufficient for calcitonin receptor-like receptor function. J Biol Chem 278:14313–14320

    Article  PubMed  Google Scholar 

  • Flahaut M, Rossier BC, Firsov D (2002) Respective roles of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMP) in cell surface expression of CRLR/RAMP heterodimeric receptors. J Biol Chem 277:14731–14737

    PubMed  CAS  Google Scholar 

  • Fluhmann B, Muff R, Hunziker W, Fischer JA, Born W (1995) A human orphan calcitonin receptor-like structure. Biochem Biophys Res Commun 206:341–347

    Article  PubMed  CAS  Google Scholar 

  • Fraser NJ, Wise A, Brown J, McLatchie LM, Main MJ, Foord SM (1999) The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 55:1054–1059

    PubMed  CAS  Google Scholar 

  • Fujisawa Y, Nagai Y, Miyatake A, Takei Y, Miura K, Shoukouji T, Nishiyama A, Kimura S, Abe Y (2004) Renal effects of a new member of adrenomedullin family, adrenomedullin2, in rats. Eur J Pharmacol 497:75–80

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa Y, Nagai Y, Miyatake A, Miura K, Nishiyama A, Kimura S, Abe Y (2007) Effects of adrenomedullin 2 on regional hemodynamics in conscious rats. Eur J Pharmacol 558:128–132

    Article  PubMed  CAS  Google Scholar 

  • Gebre-Medhin S, Mulder H, Pekny M, Westermark G, Tornell J, Westermark P, Sundler F, Ahren B, Betsholtz C (1998) Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem Biophys Res Commun 250:271–277

    Article  PubMed  CAS  Google Scholar 

  • Hagner S, Stahl U, Knoblauch B, McGregor GP, Lang RE (2002) Calcitonin receptor-like receptor: identification and distribution in human peripheral tissues. Cell Tissue Res 310:41–50

    Article  PubMed  CAS  Google Scholar 

  • Hargis GK, Williams GA, Tenenhouse A, Arnaud CD (1966) Thyrocalcitonin: cytological localization by immunofluorescence. Science 152:73–75

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Toma K, Nishikido J, Yamamoto K, Haneda K, Inazu T, Valentine KG, Opella SJ (1999) Effects of glycosylation on the structure and dynamics of eel calcitonin in micelles and lipid bilayers determined by nuclear magnetic resonance spectroscopy. Biochemistry 38:8377–8384

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Hyodo S, Kawasaki M, Mera T, Chen L, Soya A, Saito T, Fujihara H, Higuchi T, Takei Y, Ueta Y (2005a) Centrally administered adrenomedullin 2 activates hypothalamic oxytocin-secreting neurons, causing elevated plasma oxytocin level in rats. Am J Physiol Endocrinol Metab 289:E753–E761

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Hyodo S, Kawasaki M, Mera T, Chen L, Soya A, Saito T, Fujihara H, Higuchi T, Takei Y, Ueta Y (2005a) Centrally administered adrenomedullin 2 activates hypothalamic oxytocin-secreting neurons causing elevated plasma oxytocin level in rats. Am J Physiol Endocrinol Metab 00042.02005

    Google Scholar 

  • Hashimoto H, Hyodo S, Kawasaki M, Shibata M, Saito T, Suzuki H, Otsubo H, Yokoyama T, Fujihara H, Higuchi T, Takei Y, Ueta Y (2007) Adrenomedullin 2 (AM2)/intermedin is a more potent activator of hypothalamic oxytocin-secreting neurons than AM possibly through an unidentified receptor in rats. Peptides 28:1104–1112

    Article  PubMed  CAS  Google Scholar 

  • Hay DL, Smith DM (2001) Knockouts and transgenics confirm the importance of adrenomedullin in the vasculature. Trends Pharmacol Sci 22:57–59

    Article  PubMed  CAS  Google Scholar 

  • Hilairet S, Foord SM, Marshall FH, Bouvier M (2001) Protein–protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins. J Biol Chem 276: 29575–29581

    Article  PubMed  CAS  Google Scholar 

  • Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, Hosoya M, Fujii R, Watanabe T, Kikuchi K, Terao Y, Yano T, Yamamoto T, Kawamata Y, Habata Y, Asada M, Kitada C, Kurokawa T, Onda H, Nishimura O, Tanaka M, Ibata Y, Fujino M (2000) New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol 2:703–708

    Article  PubMed  CAS  Google Scholar 

  • Hnasko R, Khurana S, Shackleford N, Steinmetz R, Low MJ, Ben-Jonathan N (1997) Two distinct pituitary cell lines from mouse intermediate lobe tumors: a cell that produces prolactin-regulating factor and a melanotroph [see comments]. Endocrinology 138:5589–5596

    Article  PubMed  CAS  Google Scholar 

  • Hyde JF, Murai I, Ben-Jonathan N (1987) The rat posterior pituitary contains a potent prolactin-releasing factor: studies with perifused anterior pituitary cells. Endocrinology 121:1531–1539

    Article  PubMed  CAS  Google Scholar 

  • Kamalakaran S, Radhakrishnan SK, Beck WT (2005) Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites. J Biol Chem 280:21491–21497

    Article  PubMed  CAS  Google Scholar 

  • Kindt F, Wiegand S, Loser C, Nilles M, Niemeier V, Hsu SY, Steinhoff M, Kummer W, Gieler U, Haberberger RV (2007) Intermedin: a skin peptide that is downregulated in atopic dermatitis. J Invest Dermatol 127:605–613

    Article  PubMed  CAS  Google Scholar 

  • Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192:553–560

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Liu YJ, Gonda T, Takei Y (2004) Coronary vasodilatory response to a novel peptide, adrenomedullin 2. Clin Exp Pharmacol Physiol 31(Suppl 2):S49–S50

    Article  PubMed  Google Scholar 

  • Kuwasako K, Kitamura K, Ito K, Uemura T, Yanagita Y, Kato J, Sakata T, Eto T (2001) The seven amino acids of human RAMP2 (86) and RAMP3 (59) are critical for agonist binding to human adrenomedullin receptors. J Biol Chem 276:49459–49465

    Article  PubMed  CAS  Google Scholar 

  • Kuwasako K, Kitamura K, Nagoshi Y, Cao YN, Eto T (2003) Identification of the human receptor activity-modifying protein 1 domains responsible for agonist binding specificity. J Biol Chem 278:22623–22630

    Article  PubMed  CAS  Google Scholar 

  • Laudon M, Grossman DA, Ben-Jonathan N (1990) Prolactin-releasing factor: cellular origin in the intermediate lobe of the pituitary. Endocrinology 126:3185–3192

    Article  PubMed  CAS  Google Scholar 

  • Lin HY, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn A, Kolakowski LF Jr, Lodish HF, Goldring SR (1991a) Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science 254:1022–1024

    Article  PubMed  CAS  Google Scholar 

  • Lin HY, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn A, Kolakowski LF Jr, Yamin M, Lodish HF, Goldring SR (1991b) Expression cloning and characterization of a porcine renal calcitonin receptor. Trans Assoc Am Physicians 104:265–272

    PubMed  CAS  Google Scholar 

  • Lipton RB, Dodick DW (2004) CGRP antagonists in the acute treatment of migraine. Lancet Neurol 3:332

    Article  PubMed  Google Scholar 

  • Lu JT, Son YJ, Lee J, Jetton TL, Shiota M, Moscoso L, Niswender KD, Loewy AD, Magnuson MA, Sanes JR, Emeson RB (1999) Mice lacking alpha-calcitonin gene-related peptide exhibit normal cardiovascular regulation and neuromuscular development. Mol Cell Neurosci 14:99–120

    Article  PubMed  CAS  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339

    Article  PubMed  CAS  Google Scholar 

  • Minamino N, Kikumoto K, Isumi Y (2002) Regulation of adrenomedullin expression and release. Microsc Res Tech 57:28–39

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R, Satoh F, Murakami O, Totsune K, Suzuki T, Sasano H, Ito S, Takahashi K (2007) Expression of adrenomedullin2/intermedin in human brain, heart, and kidney. Peptides 28:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Farr SA, Flood JF (1996) Peripherally administered calcitonin gene-related peptide decreases food intake in mice. Peptides 17:511–516

    Article  PubMed  CAS  Google Scholar 

  • Muff R, Buhlmann N, Fischer JA, Born W (1999) An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology 140:2924–2927

    Article  PubMed  CAS  Google Scholar 

  • Mulder H, Gebre-Medhin S, Betsholtz C, Sundler F, Ahren B (2000) Islet amyloid polypeptide (amylin)-deficient mice develop a more severe form of alloxan-induced diabetes. Am J Physiol Endocrinol Metab 278:E684–E691

    PubMed  CAS  Google Scholar 

  • Murai I, Ben-Jonathan N (1987) Posterior pituitary lobectomy abolishes the suckling-induced rise in prolactin (PRL): evidence for a PRL-releasing factor in the posterior pituitary. Endocrinology 121:205–211

    Article  PubMed  CAS  Google Scholar 

  • Murai I, Ben-Jonathan N (1990) Acute stimulation of prolactin release by estradiol: mediation by the posterior pituitary. Endocrinology 126:3179–3184

    Article  PubMed  CAS  Google Scholar 

  • Murphy TC, Samson WK (1995) The novel vasoactive hormone, adrenomedullin, inhibits water drinking in the rat. Endocrinology 136:2459–2463

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Yoshida H, Makita S, Arakawa N, Niinuma H, Hiramori K (1997) Potent and long-lasting vasodilatory effects of adrenomedullin in humans. Comparisons between normal subjects and patients with chronic heart failure. Circulation 95:1214–1221

    PubMed  CAS  Google Scholar 

  • Nishihara E, Nagayama Y, Inoue S, Hiroi H, Muramatsu M, Yamashita S, Koji T (2000) Ontogenetic changes in the expression of estrogen receptor alpha and beta in rat pituitary gland detected by immunohistochemistry. Endocrinology 141:615–620

    Article  PubMed  CAS  Google Scholar 

  • Nishimatsu H, Hirata Y, Shindo T, Kurihara H, Kakoki M, Nagata D, Hayakawa H, Satonaka H, Sata M, Tojo A, Suzuki E, Kangawa K, Matsuo H, Kitamura T, Nagai R (2002) Role of endogenous adrenomedullin in the regulation of vascular tone and ischemic renal injury: studies on transgenic/knockout mice of adrenomedullin gene. Circ Res 90:657–663

    Article  PubMed  CAS  Google Scholar 

  • Nishimatsu H, Hirata Y, Shindo T, Kurihara H, Suzuki E, Sata M, Satonaka H, Takeda R, Nagata D, Kakoki M, Hayakawa H, Kangawa K, Matsuo H, Kitamura T, Nagai R (2003) Endothelial responses of the aorta from adrenomedullin transgenic mice and knockout mice. Hypertens Res 26:Suppl S79–S84

    Google Scholar 

  • Niu P, Shindo T, Iwata H, Ebihara A, Suematsu Y, Zhang Y, Takeda N, Iimuro S, Hirata Y, Nagai R (2003) Accelerated cardiac hypertrophy and renal damage induced by angiotensin II in adrenomedullin knockout mice. Hypertens Res 26:731–736

    Article  PubMed  CAS  Google Scholar 

  • Niu P, Shindo T, Iwata H, Iimuro S, Takeda N, Zhang Y, Ebihara A, Suematsu Y, Kangawa K, Hirata Y, Nagai R (2004) Protective effects of endogenous adrenomedullin on cardiac hypertrophy, fibrosis, and renal damage. Circulation 109:1789–1794

    Article  PubMed  CAS  Google Scholar 

  • Oehler MK, Hague S, Rees MC, Bicknell R (2002) Adrenomedullin promotes formation of xenografted endometrial tumors by stimulation of autocrine growth and angiogenesis. Oncogene 21:2815–2821

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Nishimura S, Uchiyama S, Kobayashi K, Kyogoku Y, Hayashi M, Kobayashi Y (1998) Conformation analysis of eel calcitonin – comparison with the conformation of elcatonin. Eur J Biochem 257:331–336

    Article  PubMed  CAS  Google Scholar 

  • Oh-hashi Y, Shindo T, Kurihara Y, Imai T, Wang Y, Morita H, Imai Y, Kayaba Y, Nishimatsu H, Suematsu Y, Hirata Y, Yazaki Y, Nagai R, Kuwaki T, Kurihara H (2001) Elevated sympathetic nervous activity in mice deficient in alphaCGRP. Circ Res 89:983–990

    Article  PubMed  CAS  Google Scholar 

  • Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, Pollentier S, Lesko LM (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110

    Article  PubMed  CAS  Google Scholar 

  • Pan CS, Yang JH, Cai DY, Zhao J, Gerns H, Yang J, Chang JK, Tang CS, Qi YF (2005) Cardiovascular effects of newly discovered peptide intermedin/adrenomedullin 2. Peptides 26:1640–1646

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini C, Guivarc’h D, Boxberg YV, Nothias F, Vincent JD, Vernier P (1999) Stage- and region-specific expression of estrogen receptor alpha isoforms during ontogeny of the pituitary gland. Endocrinology 140:2781–2789

    Article  PubMed  CAS  Google Scholar 

  • Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM (2002) International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54:233–246

    Google Scholar 

  • Reidelberger RD, Kelsey L, Heimann D (2002) Effects of amylin-related peptides on food intake, meal patterns, and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 282:R1395–1404

    PubMed  CAS  Google Scholar 

  • Roh J, Chang CL, Bhalla A, Klein C, Hsu SY (2004) Intermedin is a calcitonin/CGRP family peptide acting through the CRLR/RAMP receptor complexes. J Biol Chem 279:7264–7274

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld MG, Mermod JJ, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129–135

    Article  PubMed  CAS  Google Scholar 

  • Saita M, Shimokawa A, Kunitake T, Kato K, Hanamori T, Kitamura K, Eto T, Kannan H (1998) Central actions of adrenomedullin on cardiovascular parameters and sympathetic outflow in conscious rats. Am J Physiol 274:R979–R984

    PubMed  CAS  Google Scholar 

  • Schmitz O, Brock B, Rungby J (2004) Amylin agonists: a novel approach in the treatment of diabetes. Diabetes 53:S233–S238

    Article  PubMed  CAS  Google Scholar 

  • Scully KM, Gleiberman AS, Lindzey J, Lubahn DB, Korach KS, Rosenfeld MG (1997) Role of estrogen receptor-alpha in the anterior pituitary gland. Mol Endocrinol 11:674–681

    Article  PubMed  CAS  Google Scholar 

  • Seltzer AM, Donoso AO, Podesta E (1986) Restraint stress stimulation of prolactin and ACTH secretion: role of brain histamine. Physiol Behav 36:251–255

    Article  PubMed  CAS  Google Scholar 

  • Shimosawa T, Shibagaki Y, Ishibashi K, Kitamura K, Kangawa K, Kato S, Ando K, Fujita T (2002) Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage. Circulation 105:106–111

    Article  PubMed  CAS  Google Scholar 

  • Shindo T, Kurihara H, Maemura K, Kurihara Y, Kuwaki T, Izumida T, Minamino N, Ju KH, Morita H, Oh-hashi Y, Kumada M, Kangawa K, Nagai R, Yazaki Y (2000) Hypotension and resistance to lipopolysaccharide-induced shock in transgenic mice overexpressing adrenomedullin in their vasculature. Circulation 101:2309–2316

    PubMed  CAS  Google Scholar 

  • Shindo T, Kurihara Y, Nishimatsu H, Moriyama N, Kakoki M, Wang Y, Imai Y, Ebihara A, Kuwaki T, Ju KH, Minamino N, Kangawa K, Ishikawa T, Fukuda M, Akimoto Y, Kawakami H, Imai T, Morita H, Yazaki Y, Nagai R, Hirata Y, Kurihara H (2001) Vascular abnormalities and elevated blood pressure in mice lacking adrenomedullin gene. Circulation 104:1964–1971

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Kikuchi K, Maruyama Y, Urabe T, Nakajima K, Sasano H, Imai Y, Murakami O, Totsune K (2006) Immunocytochemical localization of adrenomedullin 2/intermedin-like immunoreactivity in human hypothalamus, heart and kidney. Peptides 27:1383–1389

    Article  PubMed  CAS  Google Scholar 

  • Takei Y, Inoue K, Ogoshi M, Kawahara T, Bannai H, Miyano S (2004) Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett 556: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Taylor MM, Samson WK (2004) A possible mechanism for the action of adrenomedullin in brain to stimulate stress hormone secretion. Endocrinology 145:4890–4896

    Article  PubMed  CAS  Google Scholar 

  • Taylor MM, Samson WK (2005) Stress hormone secretion is altered by central administration of intermedin/adrenomedullin-2. Brain Res 1045:199–205

    PubMed  CAS  Google Scholar 

  • Taylor MM, Bagley SL, Samson WK (2005) Intermedin/adrenomedullin-2 acts within central nervous system to elevate blood pressure and inhibit food and water intake. Am J Physiol Regul Integr Comp Physiol 288:R919–R927

    PubMed  CAS  Google Scholar 

  • Tilakaratne N, Christopoulos G, Zumpe ET, Foord SM, Sexton PM (2000) Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J Pharmacol Exp Ther 294:61–72

    PubMed  CAS  Google Scholar 

  • Westermark P, Wernstedt C, O’Brien TD, Hayden DW, Johnson KH (1987) Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am J Pathol 127:414–417

    PubMed  CAS  Google Scholar 

  • Wilson ME, Price RH Jr, Handa RJ (1998) Estrogen receptor-beta messenger ribonucleic acid expression in the pituitary gland. Endocrinology 139:5151–5156

    Article  PubMed  CAS  Google Scholar 

  • Wimalawansa SJ (1996) Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr Rev 17:533–585

    PubMed  CAS  Google Scholar 

  • Yang JH, Jia YX, Pan CS, Zhao J, Ouyang M, Yang J, Chang JK, Tang CS, Qi YF (2005a) Effects of intermedin(1–53) on cardiac function and ischemia/reperfusion injury in isolated rat hearts. Biochem Biophys Res Commun 327:713–719

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Qi YF, Jia YX, Pan CS, Zhao J, Yang J, Chang JK, Tang CS (2005b) Protective effects of intermedin/adrenomedullin2 on ischemia/reperfusion injury in isolated rat hearts. Peptides 26:501–507

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Pan CS, Jia YX, Zhang J, Zhao J, Pang YZ, Yang J, Tang CS, Qi YF (2006) Intermedin1–53 activates L-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Biochem Biophys Res Commun 341:567–572

    Article  PubMed  CAS  Google Scholar 

  • Zaidi M, Moonga BS, Abe E (2002) Calcitonin and bone formation: a knockout full of surprises. J Clin Invest 110:1769–1771

    PubMed  CAS  Google Scholar 

  • Zhang L, Hoff AO, Wimalawansa SJ, Cote GJ, Gagel RF, Westlund KN (2001) Arthritic calcitonin/alpha calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity. Pain 89:265–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia Lin Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Chang, C.L., Hsu, S.Y.T. (2010). Insights into the Function of Intermedin/Adrenomedullin 2. In: Hay, D., Dickerson, I. (eds) The calcitonin gene-related peptide family. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2909-6_9

Download citation

Publish with us

Policies and ethics