Skip to main content

Influence of Size and Shape on Inclusion Properties of Transition Metal-Based Wheel-and-Axle Diols

  • Chapter
  • First Online:

Abstract

It is widely recognized that molecular shape has a key role in orienting and modulating crystal packing efficiency and it is consequently also crucial in determining host–guest properties of solid state materials. This chapter is focused on inclusion propensity of transition metal-based systems designed to have a wheel-and-axle shape, which has shown to favour the inclusion of small guest in the solid state. The wheel-and-axle transition metal-based molecules are built by combining a vast library of wheels and axles: the terminal wheels are ligands of different shapes, and the linear axles are made by using metals of different coordination stereochemistry. These systems generally assemble in flexible dynamic frameworks, which can create pores on demand to accommodate small guest molecules. The framework is able to switch between two similarly stable states: the apohost, sustained by host–host contacts, and the solvate form, sustained by host–guest interactions. The transition between the two states is reversible, so that the process can be recycled. In this chapter the role of modifications of size and shape induced by changing metal stereochemistry and wheel hindrance are discussed, showing that both axle linearity and wheel bulkiness are needed to obtain inclusion properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this sense the terms “axle” and “wheel” are used to describe the structure of pseudorotaxanes and rotaxanes, where a linear “axle” interpenetrates a cyclic “wheel” [46].

  2. 2.

    Crystals of 1, 2 and 3 were obtained by recrystallization of Pd(LOH2)CH3COO2 and SnLOH2Cl4 from DMSO, p-xylene and dichloromethane, respectively. Crystal data: (1) \({\mathrm{C}}_{52}{\mathrm{H}}_{68}{\mathrm{N}}_{6}{\mathrm{O}}_{8}{\mathrm{PdS}}_{2},\mathrm{MW} = 1, 075.64,\mathrm{a} = 11.43\left (1\right ),\mathrm{b} = 13.095\left (5\right ),\mathrm{c} = 9.194\left (9\right )\) Å, \(\alpha = 94.01\left (4\right ),\beta = 94.02\left (9\right ),\gamma = 92.87{\left (6\right )}^{\circ }\), triclinic, P-1, R1I > 2sI = 0. 0631, wR2I > 2sI = 0. 1749. CCDC 732407. (2) C72H86N6O6Pd, \(\mathrm{MW} = 1, 237.87,\mathrm{a} = 7.7578\left (7\right ),\mathrm{b} = 15.082\left (1\right )\), c = 15. 1621 Å, α = 106. 8791, β = 98. 1782, γ = 98. 9602, triclinic, P-1, \(\mathrm{R}1\left (\mathrm{I} > 2\mathrm{s}\left (\mathrm{I}\right )\right ) = 0.0472,\mathrm{wR}2\left (\mathrm{I} > 2\mathrm{s}\left (\mathrm{I}\right )\right ) = 0.1206\). CCDC 732408. (3) C38H36Cl8N2O2Sn, MW = 954. 98, a = 7. 44276, b = 18. 8411, c = 15. 1601 Å, β = 96. 6621, monoclinic, P21 ∕ c, R1I > 2sI = 0. 0436, wR2I > 2sI = 0. 1168. CCDC 732409.

References

  1. Dunitz J D, Filippini G, Gavezzotti A, Tetrahedron, 2000, 56, 6595–6601

    Article  CAS  Google Scholar 

  2. Mingos D M P, Rohl A L, J. Chem. Soc. Dalton Trans., 1991, 12, 3419–3425

    Article  Google Scholar 

  3. Pidcock E, Motherwell W D S, Cryst. Growth Des., 2004, 4, 611–620

    Article  CAS  Google Scholar 

  4. Reichling S, Huttner G, Eur. J. Inorg. Chem., 2000, 5, 857–877

    Article  Google Scholar 

  5. Kitaigorodskii A I, Molecular Crystals and Molecules, Academic Press, 1973, New York

    Google Scholar 

  6. Torquato S, Truskett T M, Debenedetti P G, Phys. Rev. Lett., 2000, 84, 2064–2067

    Article  CAS  Google Scholar 

  7. Gavezzotti A, Molecular Aggregation: Structure Analysis and Molecular Simulation of Crystals and Liquids, Oxford University Press, 2007, Oxford

    Google Scholar 

  8. Kitaigorodskii A I, Organic Chemical Crystallography, Consultants Bureau, 1961, New York; Molecular Crystals, Nauka, 1971,Moscow; Mixed Crystals, Nauka, 1983, Moscow

    Google Scholar 

  9. Bishop R, Chem. Soc. Rev., 1996, 25, 311–319

    Article  CAS  Google Scholar 

  10. Gorbitz C H, Hersleth H P, Acta Cryst., 2000, B56, 526–534

    CAS  Google Scholar 

  11. Miyata M, Miki K, Reversible intercalation of guest molecules in crystals of cholic acid. In: Ohashi Y (ed.), Reactivity in Molecular Crystals, Kodansha, Verlag Chemie, 1993, Tokyo, Weinheim

    Google Scholar 

  12. Dodziuk H, Molecules with holes – Cyclodextrins. In: Dodziuk H (ed.), Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications, Wiley-VCH, 2006, Weinheim

    Google Scholar 

  13. Jegorov A, Hušák M, Kratochvil M H B, Cisarová I, Cryst. Growth Des., 2003, 3, 441–444

    Article  CAS  Google Scholar 

  14. Dianin A P, J. Russ. Phys. Chem. Soc., 1914, 31, 1310; Lloyd G O, Bredenkamp M W, Barbour L J, Chem. Commun., 2005, 32, 4053–4055

    Google Scholar 

  15. Byrn M P, Curtis C J, Goldberg I, Hsiou Y, Khan S I, Sawin P A, Tendick S K, Strouse C E, J. Am. Chem. Soc., 1991, 113, 6549–6557; Byrn M P, Curtis C J, Hsiou Y, Khan S I, Sawin PA, Tendick S K, Terzis A, Strouse C E, J. Am. Chem. Soc., 1993, 115, 9480–9497

    Google Scholar 

  16. Dalgarno S J, Thallapally P K, Barbour L J, Atwood J L, Chem. Soc. Rev., 2007, 36, 236–245

    Article  CAS  Google Scholar 

  17. Bishop R, Acc. Chem. Res., 2009, 42, 67–78

    Google Scholar 

  18. Toda F, Diol, bisphenol, and diamide host compounds. In: Macnicol D D, Toda F, Bishop R (eds.), Comprehensive Supramolecular Chemistry, Pergamon,1996, Oxford, UK

    Google Scholar 

  19. Kitagawa S, Kitaura R, Noro S I, Angew. Chem. Int. Ed., 2004, 43, 2334–2375 and references therein

    Google Scholar 

  20. Lipkowski J, Inclusion compounds formed by Werner MX2A4 coordination complexes. In: Atwood J L, Davies J E D, Macnicol D D (eds.), Inclusion Compounds, Academic Press, 1984, London

    Google Scholar 

  21. Nishikiori S, Yoshikawa H, Sano Y, Iwamoto T, Acc. Chem. Res., 2005, 38, 227–234

    Article  CAS  Google Scholar 

  22. Soldatov D V, Enright G D, Ripmeester J A, Chem. Mater., 2002, 14, 348–356

    Article  CAS  Google Scholar 

  23. Weber E, Scissor type hosts: molecular design and inclusion behaviour. In: Atwood J L, Davies J E D, Macnicol D D (eds.), Inclusion Compounds, Oxford University Press, 1991, Oxford

    Google Scholar 

  24. Soldatov D V, J. Chem. Crystallogr., 2006, 36, 747–768

    Article  CAS  Google Scholar 

  25. (a) Roex T L, Nassimbeni L R, Weber E, New J. Chem., 2008, 32, 856–863; (b) Weber E, Skobridis K, Wierig A, Nassimbeni L R, Johnson L, J. Chem. Soc., Perkin Trans. 2, 1992, 2, 2123–2130; (c) Johnson L, Nassimbeni L R, Weber E, Skobridis K, J. Chem. Soc. Perkin Trans., 1992, 2, 2131–2136; (d) Caira M R, Nassimbeni L R, Toda F, Vujovic D, J. Chem. Soc. Perkin Trans., 2001, 2, 2119–2124; (e) Csoregh I, Brehmer T, Nitsche S I, Seichter W, Weber E, J. Inclus. Phen. Macr. Chem., 2003, 47, 113–121

    Google Scholar 

  26. Suezawa H, Yoshida T, Hirota M, Takahashi H, Umezawa Y, Honda K, Tsuboyama S, Nishio M, J. Chem. Soc. Perkin. Trans., 2001, 2, 2053–2058

    Google Scholar 

  27. Dominguez Z, Dang H, Strouse M J, Garcia-Garibay M A, J. Am. Chem. Soc., 2002, 124, 7719–7727; Khuong T V, Nuez J E, Godinez C E, Garcia-Garibay M A, Acc. Chem. Res., 2006, 39, 413–422

    Google Scholar 

  28. Jetti R K R, Sukuva S S, Reddy D S, Xue F, Mak Th C W, Nangia A, Desiraju G, Tetrahedron Lett., 1998, 39, 913–916

    Article  CAS  Google Scholar 

  29. Sembiring S B, Colbran S B, Bishop R, Craig D C, Rae A D, Inorg. Chim. Acta, 1995, 228, 109–117; Maharaj F, Bishop R, Craig D C, Jensen P, Scudder M L, Kumar N, Cryst. Growth Des., 2009, 9, 1334–1338

    Google Scholar 

  30. Caira M R, Jacobs A, Nassimbeni L R, Toda F, Supramol. Chem., 2004, 16, 107–112 and references therein

    Google Scholar 

  31. Bacchi A, Bosetti E, Carcelli M, Pelagatti P, Rogolino D, Cryst. Eng. Commun., 2004, 6, 177–183

    CAS  Google Scholar 

  32. Bacchi A, Bosetti E, Carcelli M, Pelagatti P, Rogolino D, Eur. J. Inorg. Chem., 2004, 10, 1985–1991

    Article  Google Scholar 

  33. Bacchi A, Bosetti E, Carcelli M, Pelagatti P, Rogolino D, Pelizzi G, Inorg. Chem., 2005, 44, 431–442

    Article  CAS  Google Scholar 

  34. Bacchi A, Carcelli M, Bosetti E, Cryst. Eng. Comm., 2005, 7, 527–537

    CAS  Google Scholar 

  35. Bacchi A, Bosetti E, Carcelli M, Cryst. Eng. Comm., 2007, 9, 313–318

    CAS  Google Scholar 

  36. Bacchi A, Carcelli M, Chiodo T, Mezzadri F, Cryst. Eng. Comm., 2008, 10, 1916–1927

    CAS  Google Scholar 

  37. Nassimbeni L R, Acc. Chem. Res., 2003, 36, 631–637

    Article  CAS  Google Scholar 

  38. Uemura K, Kitagawa S, Kondo M, Fukui K, Kitaura R, Chang H C, Mizutani T, Chem. Eur. J., 2002, 8, 3586–3600

    Article  CAS  Google Scholar 

  39. Takamizawa S, Nanoporosity, gas storage, gas sensing. In: Braga D, Grepioni F (eds.), Making Crystals by Design, Wiley, 2007, Weinheim

    Google Scholar 

  40. Kitagawa S, Uemura K, Chem. Soc. Rev., 2005, 34, 109–119

    Article  CAS  Google Scholar 

  41. Long J R, Yaghi O M, Chem. Soc. Rev., 2009, 38, 1213–1214

    Article  CAS  Google Scholar 

  42. Barbour L J, Chem. Commun., 2006, 11, 1163–1168

    Article  Google Scholar 

  43. Hirshfeld F L, Theor. Chim. Acta, 1977, 44, 129–138; McKinnon J J, Mitchell A S, Spackman M A, Chem. Eur. J., 1998, 4, 2136–2141

    Google Scholar 

  44. Bacchi A, How guests settle and plan their escape route in a crystal: structural metrics of solvation and desolvation for inorganic diols. In: Boeyens J C A, Ogilvie J F (eds.), Models, Mysteries and Magic of Molecules, Springer, 2008, Dordrecht

    Google Scholar 

  45. Zeng X, Cai J, Gu Y, Tetrahedron Lett., 1995, 36, 7275–7276

    Article  CAS  Google Scholar 

  46. Loeb S J, Chem. Soc. Rev., 2007, 36, 226–235

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Bacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bacchi, A., Carcelli, M. (2010). Influence of Size and Shape on Inclusion Properties of Transition Metal-Based Wheel-and-Axle Diols. In: Comba, P. (eds) Structure and Function. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2888-4_10

Download citation

Publish with us

Policies and ethics