Skip to main content

Development And Applications Of Non-Perturbative Approximants To The State-Specific Multi-Reference Coupled Cluster Theory: The Two Distinct Variants

  • Chapter
  • First Online:
Recent Progress in Coupled Cluster Methods

Abstract

In this chapter, two useful non-perturbative approximants to the state specific multi-reference coupled cluster theory (SS-MRCC) of Mukherjee et al. are developed and pilot numerical applications are presented. The parent formulation is rigorously size-extensive and the use of a complete active space leads to a size-consistent theory as well when localized orbitals are used. The redundancy of cluster amplitudes, which is customary when the Jeziorski-Monkhorst wave-operator is used in a state-specific theory is bypassed by employing strict requirements of size-extensivity of energy and the avoidance of intruders, thus rendering the parent SS-MRCC theory rigorously size-extensive as well as intruder-free when the desired state is well separated from virtual functions. In the working equations, the cluster amplitudes for the operators acting on the different model functions are coupled. In addition, the state-specific nature of the formalism leads to a lot of redundant cluster amplitudes. The equations are thus rather complex with both coupling terms and requiring sufficiency conditions to eliminate redundancy. The two approximants discussed in this chapter are designed to reduce the complexity of the working equations mentioned above via well-defined non-perturbative approximations in two different ways. In the first variant, to be called the uncoupled state-specific MRCC(UC-SS-MRCC), we use an analogue of the anonymous parentage approximation in the coupling term, which leads to considerable simplification of the working equations, yet with very little deterioration of the quality of the computed energy. In the second one, named internally contracted inactive excitations in SS-MRCC(ICI-SS-MRCC), the cluster amplitudes for all the inactive double excitations are regarded as independent of the model functions. Since the all-inactive double excitation amplitudes are the most numerous, this variant leads to a dramatic reduction in the total number of cluster amplitudes. The ICI-SS-MRCC, unlike analogous theories, such as IC-MRCISD or CASPT2, uses relaxed coefficients for the model functions and at the same time employs projection manifolds for the virtuals obtained from inactiven hole-n particle (nh-np) excitations on the relaxed multi-reference combinations. Our pilot numerical applications on a few important test cases indicate that the ICI-SS-MRCC performs remarkably well, closely paralleling the performance of the full-blown SS-MRCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Coester, Nucl. Phys.7, 421 (1958)

    Article  Google Scholar 

  2. H. Kummel, Nucl. Phys.17, 477 (1960)

    Article  Google Scholar 

  3. J. Č ížek, J. Chem. Phys.45, 4256 (1966)

    Google Scholar 

  4. R. J. Bartlett, G. D. Purvis III, Int. J. Quantum Chem.14, 561 (1978)

    Article  CAS  Google Scholar 

  5. J. Paldus, J. Č ížek, I. Shavitt, Phys. Rev. A5, 50 (1972)

    Article  Google Scholar 

  6. R. J. Bartlett, Annu. Rev. Phys. Chem.32, 359 (1981)

    Article  CAS  Google Scholar 

  7. R. J. Bartlett, inModern Electronic Structure Theory, Ed. D. R. Yarkony (World Scientific, Singapore, 1995), pp. 1047–1131

    Chapter  Google Scholar 

  8. J. Paldus, X. Li, Adv. Chem. Phys.110, 1 (1999)

    Article  CAS  Google Scholar 

  9. J. Č ížek, Adv. Chem. Phys.9, 105 (1975)

    Google Scholar 

  10. D.Mukherjee, R. K. Moitra, A. Mukhopadhyay, Mol. Phys.30, 1861 (1975), Mol. Phys.33, 955 (1977)

    Google Scholar 

  11. I. Lindgren, Int. J. Quantum. Chem.S12, 33 (1978)

    Google Scholar 

  12. B. Jeziorski, H. J. Monkhorst, Phys. Rev. A24, 1668 (1981)

    Article  CAS  Google Scholar 

  13. B. Jeziorski, J. Paldus, J. Chem. Phys.88, 5673 (1988)

    Article  CAS  Google Scholar 

  14. P. Durand, J. P. Malrieu, Adv. Chem. Phys.67, 321 (1987)

    Article  CAS  Google Scholar 

  15. C. Bloch, Nucl. Phys.6, 329 (1958)

    Article  CAS  Google Scholar 

  16. T. H. Schucan, H. A. Weidenmuller, Ann. Phys.73, 108 (1972)

    Article  CAS  Google Scholar 

  17. D. Mukherjee, Chem. Phys. Lett.125, 207 (1986); Int. J. Quantum. ChemS20, 409 (1986)

    Google Scholar 

  18. D. Mukhopadhyay, D. Mukherjee, Chem. Phys. Lett.163, 171 (1989), Chem. Phys. Lett.177, 441 (1991)

    Google Scholar 

  19. U. Kaldor, Theor. Chim. Acta,80, 427 (1991) and references therein

    Google Scholar 

  20. W. Kutzelnigg, J. Chem. Phys.77, 3081 (1982); W. Kutzelnigg, S. Koch, J. Chem. Phys.79, 4315 (1983)

    Google Scholar 

  21. I. Lindgren, J. Phys. B7, 2441 (1974)

    Article  CAS  Google Scholar 

  22. B. Kirtman, J. Chem. Phys.75, 798 (1981)

    Article  CAS  Google Scholar 

  23. J. P. Malrieu, Ph. Durand, J. P. Daudey, J. Phys. A Math. Gen.18, 809 (1985); J. L. Heully, J. P. Daudey, J. Chem. Phys.88, 1046 (1988)

    Google Scholar 

  24. D. Mukhopadhyay, B. Datta, D. Mukherjee, Chem. Phys. Lett.197, 236 (1992)

    Article  Google Scholar 

  25. B. Datta, D. Mukherjee, J. Mol. Struct. THEOCHEM361, 21 (1996)

    Article  CAS  Google Scholar 

  26. A. Landau, E. Eliav, Y. Ishikawa, U. Kaldor, J. Chem. Phys.113, 9905 (2000)

    Article  CAS  Google Scholar 

  27. J. Meller, J. P. Malrieu, R. Caballol, J. Chem. Phys.104, 4068 (1996)

    Article  CAS  Google Scholar 

  28. I. Nebot-Gil, J. Sanchez-Marin, J. P. Malrieu, J. L. Heully, D. Maynau, J. Chem. Phys.103, 2576 (1995)

    Article  CAS  Google Scholar 

  29. J. P. Malrieu, J. P. Daudey, R. Caballol, J. Chem. Phys.101, 8908 (1994)

    Article  CAS  Google Scholar 

  30. J. Má šik, I. Hubač , inQuantum Systems in Chemistry and Physics: Trends in Methods and Applications, Ed. R. McWeeny et al. (KA, Dordrecht, 1997)

    Google Scholar 

  31. J. Má vsik, I. Hubač , P. Mach, J. Chem. Phys.108, 6571 (1998)

    Article  Google Scholar 

  32. J. Pittner, J. Chem. Phys.118, 10876 (2003)

    Article  CAS  Google Scholar 

  33. U. S. Mahapatra, B. Datta, B. Bandyopadhyay, D. Mukherjee, Adv. Quantum Chem.30, 163 (1998)

    Article  CAS  Google Scholar 

  34. U. S. Mahapatra, B. Datta, D. Mukherjee, Mol. Phys.94, 157 (1998)

    Article  CAS  Google Scholar 

  35. U. S. Mahapatra, B. Datta, D. Mukherjee, J. Chem. Phys.110, 6171 (1999)

    Article  CAS  Google Scholar 

  36. F. A. Evangelista, W. D. Allen, H. F. Schaefer III, J. Chem. Phys.125, 154113 (2006)

    Article  CAS  Google Scholar 

  37. F. A. Evangelista, W. D. Allen, H. F. Schaefer III, J. Chem. Phys.127, 024102 (2007)

    Article  CAS  Google Scholar 

  38. M. Hanrath, J. Chem. Phys.123, 084102 (2005)

    Article  CAS  Google Scholar 

  39. M. Nooijen, R. J. Bartlett, J. Chem. Phys.106, 6441 (1997)

    Article  CAS  Google Scholar 

  40. S. Das, N. Bera, S. Ghosh, D. Mukherjee, THEOCHEM79, 771 (2006)

    Google Scholar 

  41. S. Das, D. Datta, R. Maitra, D. Mukherjee, Chem. Phys.349, 115 (2008)

    Article  CAS  Google Scholar 

  42. S. Das, S. Pathak, R. Maitra, D. Mukherjee,under preparation Approximants to SS-MRCC 23

    Google Scholar 

  43. W. Meyer, in.Methods of Electronic Structure Theory, Ed. H. F. Schaefer III (Plenum, New York.1977)

    Google Scholar 

  44. H. J. Werner, E. A. Reinsch, J. Chem. Phys.76, 3144 (1982)

    Article  CAS  Google Scholar 

  45. H. J. Werner, P. J. Knowles, J Chem. Phys.89, 5803 (1988)

    Article  CAS  Google Scholar 

  46. B. O. Roos, Adv. Chem. Phys.69, 399 (1987)

    Article  CAS  Google Scholar 

  47. K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, K. Wolinski, J. Phys. Chem.94, 5483 (1990), J. Chem. Phys.96, 1218 (1992)

    Google Scholar 

  48. K. Hirao, Chem. Phys. Lett.190, 374 (1992); Int. J. Quantum. Chem.S26, 517; R. B. Murphy, R. P. Messmer, J. Chem. Phys.97, 4170 (1992); Y. K. Choe, Y. Nakano, K. Hirao, J. Chem. Phys.115, 621 (2001)

    Google Scholar 

  49. I. Hubač , J. Pittner, P. Č á rsky, J. Chem. Phys.112, 8779 (2000)

    Article  Google Scholar 

  50. G. D. Purvis, R. Sheppard, F. B. Brown, R. J.Bartlett., Int. J. Quantum Chem.23, 835 (1983)

    Article  CAS  Google Scholar 

  51. A. Banerjee, J. Simons, Chem. Phys.87, 215 (1984)

    Article  CAS  Google Scholar 

  52. U. Kaldor, Chem. Phys.140, 1 (1990)

    Article  CAS  Google Scholar 

  53. U. Kaldor, Theor. Chim. Acta80, 427 (1991)

    Article  CAS  Google Scholar 

  54. I. Garcia-Cuesta, J. Sanchez-Marin, A. Sanchez de Meras, N. B. Amor, J. Chem. Phys.107, 6306 (1997)

    Article  CAS  Google Scholar 

  55. D. Pahari, S. Chattopadhyay, A. Deb, D. Mukherjee, Chem. Phys. Lett.386, 307–312 (2004)

    Article  CAS  Google Scholar 

  56. S. Chattopadhyay, D. Pahari, D. Mukherjee, U. S. Mahapatra, J. Chem. Phys.120, 5968 (2004)

    Article  CAS  Google Scholar 

  57. C. D. Sherril, L. M. Leininger, T. J. Van Huis, H. F. Shaefer III, J. Chem. Phys.108, 1040 (1998)

    Article  Google Scholar 

  58. J. F. Stanton, W. N. Lipscomb, D. Magers, J. Bartlett, J. Chem. Phys.90, 1077 (1989)

    Article  CAS  Google Scholar 

  59. K. Jankowski, J. Paldus, Int. J. Quantum Chem.18, 1243 (1980) and references therein; S. Wilson, K. Jankowski, J. Paldus, Int. J. Quantum Chem.23, 1781 (1983)

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to the editors for their extraordinary patience with them. SD acknowledges the CSIR and DST for research fellowships. SP and RM are grateful to the DST for research fellowships. DM acknowledges DST for the J.C. Bose Fellowship. The authors gratefully acknowledge the Indo-Hungarian and Indo-Swedish Bilateral Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghamitra Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Das, S., Pathak, S., Maitra, R., Mukherjee, D. (2010). Development And Applications Of Non-Perturbative Approximants To The State-Specific Multi-Reference Coupled Cluster Theory: The Two Distinct Variants. In: Cársky, P., Paldus, J., Pittner, J. (eds) Recent Progress in Coupled Cluster Methods. Challenges and Advances in Computational Chemistry and Physics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2885-3_3

Download citation

Publish with us

Policies and ethics