Skip to main content

Coupled Cluster Calculations: Ovos as an Alternative Avenue Towards Treating Still Larger Molecules

  • Chapter
  • First Online:
Recent Progress in Coupled Cluster Methods

Abstract

An overview of basic principles and different concepts of the Optimized Virtual Orbital Space (OVOS) method and its applications is presented. The objective is to show that the OVOS is a tool that allows extending the applicability of Coupled Cluster calculations to larger systems with larger basis sets it was possible before. We describe some instruments which serve as a measure of the accuracy of the CC calculation upon the OVOS truncation supplemented with a short outline of how to get a balanced reduction of virtual orbital space for all species participating in, e.g., calculation of reaction or interaction energies. We demonstrate the performance of the OVOS technique in different areas, including molecular electric properties, electron affinities, intermolecular interactions and some other applications. We also present some examples of large scale CCSD(T) calculations, which illustrate the computational efficiency of the OVOS approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Čí žek, J. Chem. Phys.45, 4256 (1966)

    Article  Google Scholar 

  2. R. J. Bartlett, M. Musiał, Rev. Mod. Phys.79, 291 (2007)

    Article  CAS  Google Scholar 

  3. J. Paldus, X. Li, Adv. Chem. Phys.110, 1 (1999)

    Article  CAS  Google Scholar 

  4. R. J. Bartlett, inModern Electronic Structure Theory, Part II, Ed. D. R. Yarkony (World Scientific, Singapore, 1995), pp. 1047–1131

    Google Scholar 

  5. M. Urban, I. Černuš á k, V. Kellö , J. Noga, inMethods in Computational Chemistry, vol. 1, Ed. S. Wilson (Plenum Press, New York, 1987), pp. 117–250

    Google Scholar 

  6. J. Pittner, P. Piecuch, Mol. Phys.107, 1209 (2009)

    Article  CAS  Google Scholar 

  7. X. Li, J. Paldus, J. Chem. Phys.119, 5320 (2003)

    Article  CAS  Google Scholar 

  8. N. Bera, S. Ghosh, D. Mukherjee, S. Chattopadhyay, J. Phys. Chem. A109, 11462 (2005)

    Article  CAS  Google Scholar 

  9. F. Aquilante, L. De Vico, N. Ferre, G. Ghigo, P.-Å. Malmquist, P. Neográ dy, T. Pedersen, M. Pitoň á k, M. Reiher, B. Roos, L. Serrano-Andres, M. Urban, V. Veryazov, R. Lindh, J. Comput. Chem.31, 224 (2010)

    Article  CAS  Google Scholar 

  10. P. Jurečka, J. Černý , P. Hobza, D. R. Salahub, J. Comput. Chem.28, 555 (2007)

    Article  CAS  Google Scholar 

  11. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc.120, 215 (2008)

    Article  CAS  Google Scholar 

  12. T. Schwabe, S. Grimme, Phys. Chem. Chem. Phys.9, 3397 (2007)

    Article  CAS  Google Scholar 

  13. J. Noga, R. J. Bartlett, J. Chem. Phys.86, 7041 (1987)

    Article  CAS  Google Scholar 

  14. M. Musiał, S. A. Kucharski, R. J. Bartlett, J. Chem. Phys.116, 4382 (2002)

    Article  CAS  Google Scholar 

  15. M. Kallay, P. R. Surjan, J. Chem. Phys.115, 2945 (2001)

    Article  CAS  Google Scholar 

  16. K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett.157, 479 (1987)

    Article  Google Scholar 

  17. M. Urban, J. Noga, S. J. Cole, R. J. Bartlett, J. Chem. Phys.83, 4041 (1985)

    Article  CAS  Google Scholar 

  18. T. J. Lee, G. E. Scuseria, inQuantum Mechanical Electronic Structure Calculations with Chemical Accuracy, Ed. S. R. Langhoff (Kluwer Academic, Dordrecht, 1995), pp. 47–108

    Google Scholar 

  19. J. Watts, M. Urban, R. J. Bartlett, Theor. Chim. Acta90, 341 (1995)

    CAS  Google Scholar 

  20. M. Urban, P. Neográ dy, J. Raab, G. H. D. Diercksen, Collect. Czech. Chem. Commun.63, 1409 (1998)

    Article  CAS  Google Scholar 

  21. W. Kutzelnigg, Theor. Chim. Acta68, 445 (1985)

    Article  CAS  Google Scholar 

  22. W. Klopper, F. R. Manby, S. Ten-no, E. F. Valeev, Int. Rev. Phys. Chem.25, 427 (2006)

    Article  CAS  Google Scholar 

  23. J. Noga, S. Kedžuch, J. Šimunek, S. Ten-no, J. Chem. Phys.128, 174103 (2008)

    Article  CAS  Google Scholar 

  24. L. Adamowicz, R.J. Bartlett, J. Chem. Phys.86, 6314 (1987)

    Article  CAS  Google Scholar 

  25. L. Adamowicz, R.J. Bartlett, A. J. Sadlej, J. Chem. Phys.88, 5749 (1988)

    Article  CAS  Google Scholar 

  26. C. Edmiston, M. Krauss, J. Chem. Phys.45, 1833 (1966)

    Article  CAS  Google Scholar 

  27. T. L. Barr, E. R. Davidson, Phys. Rew. A1, 644 (1970)

    Article  CAS  Google Scholar 

  28. C. Sosa, J. Geertsen, G. W. Trucks, R. J. Bartlett, J. A. Franz, Chem. Phys. Lett.159, 148 (1989)

    Article  CAS  Google Scholar 

  29. A. G. Taube, R. J. Bartlett, Collect. Czech. Chem. Commun.70, 837 (2005)

    Article  CAS  Google Scholar 

  30. M. Schütz, G. Hetzer, H. J. Werner, J. Chem. Phys.111, 5691 (1999)

    Article  Google Scholar 

  31. M. Schütz, J. Chem. Phys.113, 9986 (2000)

    Article  Google Scholar 

  32. M. Schütz, H.-J. Werner, J. Chem. Phys.114, 661 (2001)

    Article  Google Scholar 

  33. P. Sałek, S. Høst, L. Thøgersen, P. Jørgensen, P. Manninen, J. Olsen, B. Jansí k, S. Reine, F. Pawłowski, E. Tellgren, T. Helgaker, S. Coriani, J. Chem. Phys.126, 114110 (2007)

    Article  CAS  Google Scholar 

  34. V. Weijo, P. Manninen, P. Jørgensen, O. Christiansen, J. Olsen, J. Chem. Phys.127, 074106 (2007)

    Article  CAS  Google Scholar 

  35. P. Constans, P. Y. Ayala, G. E. Scuseria, J. Chem. Phys.113, 10451 (2000)

    Article  CAS  Google Scholar 

  36. H. Koch, A. Sá nchez de Merá s, T. Helgaker, O. Christiansen, J. Chem. Phys.104, 4157 (1996)

    Article  CAS  Google Scholar 

  37. C. E. Benoit, Bull. Geodesique7, 67 (1924)

    Google Scholar 

  38. N. H. F. Beebe, J. Linderberg, Int. J. Quantum. Chem.12, 683 (1977)

    Article  CAS  Google Scholar 

  39. H. Koch, A. Sá nchez de Merá s, T. B. Pedersen, J. Chem. Phys.118, 9481 (2003)

    Article  CAS  Google Scholar 

  40. J. L. Whitten, J. Chem. Phys.58, 4496 (1973)

    Article  CAS  Google Scholar 

  41. M. Feyereisen, G. Fitzgerald, A. Komornicki, Chem. Phys.208, 359 (1993)

    CAS  Google Scholar 

  42. P. Neográ dy, M. Pitoň á k, M. Urban, Mol. Phys.103, 2141 (2005)

    Article  CAS  Google Scholar 

  43. M. Šulka, M. Pitoň á k, P. Neográ dy, M. Urban, Int. J. Quantum. Chem.108, 2159 (2008)

    Article  CAS  Google Scholar 

  44. M. Urban, M. Pitoň á k, P. Neográ dy, inLecture Series on Computer and Computational Science, Trends and Perspectives in Modern Computational Science, Eds. G. Maroulis, T. Simos (Brill Academic Publishers, Leiden, 2006), pp 265–285

    Google Scholar 

  45. S. F. Boys, F. Bernardi, Mol. Phys.100, 65 (2002), reprinted from Mol. Phys.19, 553 (1970)

    Google Scholar 

  46. P. Neográ dy, M. Pitoň á k, F. Aquilante, J. Noga, In preparation

    Google Scholar 

  47. V. Lotrich, N. Flocke, M. Ponton, A. D. Yau, A. Perera, E. Deumens, R. J. Bartlett, J. Chem. Phys.128, 194104 (2008)

    Article  CAS  Google Scholar 

  48. T. Janowski, A. R. Ford, P. Pulay, J. Chem. Theory Comput.3, 1368 (2007)

    Article  CAS  Google Scholar 

  49. T. Janowski, P. Pulay, J. Chem. Theory Comput.4, 1585 (2008)

    Article  CAS  Google Scholar 

  50. R. M. Olson, J. L. Bentz, R. A. Kendall, M. W. Schmidt, M. S. Gordon, J. Chem. Theory Comput.3, 1312 (2007)

    Article  Google Scholar 

  51. G. Karlströ m, R. Lindh, P.-Å. Malmquist, R. O. Roos, U. Ryde, V. Veryazov, P. O. Widmark, M. Cossi, B. Schimelpfennig, P. Neográ dy, L. Seijo, Comput. Mat. Science28, 222 (2003)

    Article  CAS  Google Scholar 

  52. J. Noga, P. Valiron, Mol. Phys.103, 2123 (2005)

    Article  CAS  Google Scholar 

  53. M. Pitoň á k, P. Neográ dy, V. Kellö , M. Urban, Mol. Phys.104, 2277 (2006)

    Article  CAS  Google Scholar 

  54. M. Pitoň á k, F. Holka, P. Neográ dy, M. Urban, J. Mol. Struct. (THEOCHEM)768, 79 (2006)

    Article  CAS  Google Scholar 

  55. P. Dedí ková , M. Pitoň á k, P. Neográ dy, I. Černuš á k, M. Urban, J. Phys. Chem. A112, 7115 (2008)

    Article  CAS  Google Scholar 

  56. R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys.96, 6796 (1992)

    Article  CAS  Google Scholar 

  57. D. E. Woon, T. H. Dunning, J. Chem. Phys.98, 1358 (1993)

    Article  CAS  Google Scholar 

  58. A. K. Wilson, T. van Mourik, T. H. Dunning, J. Mol. Struct. (THEOCHEM)388, 339 (1996)

    Article  CAS  Google Scholar 

  59. F. Fringuelli, G. Marino, A. Taticchi, Adv. Heterocycl. Chem.21, 119 (1977)

    Article  CAS  Google Scholar 

  60. K. Kamada, M. Ueda, H. Nagao, K. Tawa, T. Sugino, Y. Shmizu, K. Ohta, J. Phys. Chem. A104, 4723 (2000)

    Article  CAS  Google Scholar 

  61. P. Neográ dy, M. Urban, Int. J. Quantum Chem.55, 187 (1995)

    Article  Google Scholar 

  62. A. Antuš ek, M. Urban, A. J. Sadlej, J. Chem. Phys.119, 7247 (2003)

    Article  CAS  Google Scholar 

  63. J. Granatier, M. Urban, A. J. Sadlej, J. Phys. Chem. A111, 13238 (2007)

    Article  CAS  Google Scholar 

  64. N. B. Balabanov, K. A. Peterson, J. Chem. Phys.123, 064107 (2005)

    Article  CAS  Google Scholar 

  65. K. A. Peterson, C. Puzzarini, Theor. Chem. Acta114, 283 (2005)

    Article  CAS  Google Scholar 

  66. A. G. Taube, R. J. Bartlett, J. Chem. Phys.128, 164101 (2008)

    Article  CAS  Google Scholar 

  67. K. M. Ervin, I. Anusiewicz, P. Skurski, J. Simons, W. C. Lineberger, J. Phys. Chem. A107, 8521 (2003)

    Article  CAS  Google Scholar 

  68. P. Neográ dy, M. Medved’, I. Černuš á k, M. Urban, Mol. Phys.100, 541 (2002)

    Article  CAS  Google Scholar 

  69. M. Pitoň á k, P. Neográ dy, J. Řezá č, P. Jurečka, M. Urban, P. Hobza, J. Chem. Theory Comput.4, 1829 (2008)

    Article  CAS  Google Scholar 

  70. M. O. Sinnokrot, E. F. Valeev, C. D. Sherrill, J. Am. Chem. Soc.124, 10887 (2002)

    Article  CAS  Google Scholar 

  71. E. C. Lee, D. Kim, P. Jurečka, P. Tarakeshwar, P. Hobza, K. S. Kim, J. Phys. Chem. A111, 3446 (2007)

    Article  CAS  Google Scholar 

  72. J. Řezá č, P. Hobza, J. Chem. Theory Comput.4, 1835 (2008)

    Article  CAS  Google Scholar 

  73. T. Janowski, P. Pulay, Chem. Phys. Lett.447, 27 (2007)

    Article  CAS  Google Scholar 

  74. M. O. Sinnokrot, C. D. Sherrill, J. Phys. Chem. A108, 10200 (2004)

    Article  CAS  Google Scholar 

  75. R. Podeszwa, R. Bukowski, K. Szalewicz, J. Phys. Chem. A110, 10345 (2006)

    Article  CAS  Google Scholar 

  76. J. G. Hill, J. A. Platts, H.-J. Werner, Phys. Chem. Chem. Phys.8, 4072 (2006)

    Article  CAS  Google Scholar 

  77. O. Bludský , M. Rubeš , P. Soldá n, P. Nachtigall, J. Chem. Phys.128, 114102 (2008)

    Article  CAS  Google Scholar 

  78. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, A. K. Wilson, Chem. Phys. Lett.286, 243 (1998)

    Article  CAS  Google Scholar 

  79. M. Pitoň á k, K. E. Riley, P. Neográ dy, P. Hobza, Chem. Phys. Chem.9, 1636 (2008)

    Article  CAS  Google Scholar 

  80. T. H. Dunning, K. A. Peterson, J. Chem. Phys.113, 7799 (2000)

    Article  CAS  Google Scholar 

  81. S. Grimme, J. Chem. Phys.118, 9095 (2003)

    Article  CAS  Google Scholar 

  82. R. A. Distasio, M. Head-Gordon, Mol. Phys.105, 1073 (2007)

    Article  CAS  Google Scholar 

  83. G. Jansen, A. Hesselmann, J. Phys. Chem. A105, 11156 (2001)

    Article  CAS  Google Scholar 

  84. P. Jurečka, P. Hobza, Chem. Phys. Lett.365, 89 (2002)

    Article  Google Scholar 

  85. P. Jurečka, P. J. Šponer, J. Černý , P. Hobza, Phys. Chem. Chem. Phys.8, 1985 (2006)

    Article  Google Scholar 

  86. J. Řezá č, P. Jurečka, K. E. Riley, J. Černý , H. Valdes, K. Pluhá čková , K. Berka, T. Řezá č, M. Pitoň á k, J. Vondrá š ek, P. Hobza, Collect. Czech. Chem. Commun.73, 1261 (2008)

    Article  CAS  Google Scholar 

  87. R. A. Bachorz, W. Klopper, M. Gutowski, J. Chem. Phys.126, 085101 (2007)

    Article  CAS  Google Scholar 

  88. J. Simons, Acc. Chem. Res.39, 772 (2006)

    Article  CAS  Google Scholar 

  89. J. D. Gu, Y. M. Xie, H. F. Schaefer III, Chem. Phys. Lett.473, 213 (2009)

    Article  CAS  Google Scholar 

  90. M. Kallay, Proceedings, 13th ICQC, Helsinki, Finland (2009)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Slovak Research and Development Agency (Contract No. APVV-20-018405) and the Slovak Grant Agency VEGA under the contracts No. 1/0428/09 and 1/0520/10. This work was also part of the research project No. Z40550506 of the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and it was supported by Grants No. LC512 and MSM6198959216 from the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Neogrády .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Neogrády, P., Pitoňák, M., Granatier, J., Urban, M. (2010). Coupled Cluster Calculations: Ovos as an Alternative Avenue Towards Treating Still Larger Molecules. In: Cársky, P., Paldus, J., Pittner, J. (eds) Recent Progress in Coupled Cluster Methods. Challenges and Advances in Computational Chemistry and Physics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2885-3_16

Download citation

Publish with us

Policies and ethics