Skip to main content

Intermediate Hamiltonian Formulations of the Fock-Space Coupled-Cluster Method: Details, Comparisons, Examples

  • Chapter
  • First Online:
Recent Progress in Coupled Cluster Methods

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 11))

Abstract

The single-reference approaches such as many-body perturbation expansions and coupled-cluster methods, have been very successful in describing many-particle systems. Their applicability is, however, limited to the cases when the degree of quasi-degeneracy is rather weak. Unfortunately, their generalization to multi-reference cases, that would enable us to deal efficiently with quasi-degenerate and open-shell systems turned out nontrivial. The difficulties that have been encountered are of both theoretical and numerical nature. In spite of tremendous progress that has been made the problem still remains one of the main challenges for theoretical physics and quantum chemistry. In this paper we present one of the developments that, in our opinion, is very promising. It concerns one of the two basic multi-reference coupled-cluster formulations, namely, the so-called Fock-space coupled-cluster method. We would like to show that by employing the intermediate Hamiltonian technique it is possible to overcome many of the problems the standard effective Hamiltonian formulations have to face. The approach is presented in a broader context, relations with other methods of similar type are discussed and some numerical examples showing the effectiveness of the method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. McWeeny, inMethods of Molecular Quantum Mechanics, second edition (Academic Press, New York, 1998)

    Google Scholar 

  2. F. Coester, Nucl. Phys.7, 421 (1958)

    Article  Google Scholar 

  3. J. Čí žek, J. Chem. Phys.45, 4256 (1966)

    Google Scholar 

  4. G. D. Purvis, R. J. Bartlett, J. Chem. Phys.76, 1910 (1982)

    CAS  Google Scholar 

  5. R. J. Bartlett, inModern Electronic Structure Theory, Ed. D. R. Yarkony (World Scientific, New York, 1995), p. 1047

    Chapter  Google Scholar 

  6. J. Paldus, X. Li, Adv. Chem. Phys.110, 1 (1999)

    Article  CAS  Google Scholar 

  7. R. J. Bartlett, M. Musiał , Rev. Mod. Phys.79, 291 (2007)

    Article  CAS  Google Scholar 

  8. B. H. Brandow, Rev. Mod. Phys.39, 771 (1967)

    Article  CAS  Google Scholar 

  9. G. Hose, U. Kaldor, J. Phys. B12, 3827 (1979)

    Article  CAS  Google Scholar 

  10. D. Mukherjee, R. K. Moitra, A. Mukhopadhay, Mol. Phys.33, 955 (1977)

    Article  CAS  Google Scholar 

  11. R. Offermann, W. Ey, H. Kümmel, Nucl. Phys. A273, 349 (1976)

    Article  Google Scholar 

  12. I. Lindgren, Int. J. Quantum Chem. Symp.12, 33 (1978)

    CAS  Google Scholar 

  13. B. Jeziorski, H. J. Monkhorst, Phys. Rev. A24, 1668 (1981)

    Article  CAS  Google Scholar 

  14. L. Meissner, K. Jankowski, J. Wasilewski, Int. J. Quantum Chem.34, 535 (1988)

    Article  CAS  Google Scholar 

  15. D. J. Klein, J. Chem. Phys.61, 786 (1974)

    Article  CAS  Google Scholar 

  16. F. Jørgensen, Mol. Phys.29, 1137 (1975)

    Article  Google Scholar 

  17. Ph. Durand, Phys. Rev. A29, 3184 (1983)

    Article  Google Scholar 

  18. V. Hurtubise, K. F. Freed, Adv. Chem. Phys.83, 541 (1993)

    Google Scholar 

  19. L. Meissner, M. Nooijen, J. Chem. Phys.102, 9604 (1995)

    Article  CAS  Google Scholar 

  20. S. Salomonson, I. Lindgren, A.-M. Mårtensson, Phys. Scr.21, 351 (1980)

    Article  CAS  Google Scholar 

  21. U. Kaldor, Phys. Rev. A38, 6013 (1988)

    Article  CAS  Google Scholar 

  22. J. Paldus, L. Pylypow, B. Jeziorski, inMany-Body Methods in Quantum Chemistry, Lecture Notes in Chemistry, vol. 52, Ed. U. Kaldor (Springer, Berlin, 1989), pp. 151–170

    Google Scholar 

  23. K. Jankowski, J. Paldus, Int. J. Quantum Chem.18, 1243 (1980)

    Article  CAS  Google Scholar 

  24. J.-P. Malrieu, Ph. Durand, J.-P. Dauday, J. Phys. A18, 809 (1985)

    Article  CAS  Google Scholar 

  25. L. Meissner, Chem. Phys. Lett.255, 244 (1996)

    Article  CAS  Google Scholar 

  26. L. Meissner, J. Chem. Phys.108, 9227 (1998)

    Article  CAS  Google Scholar 

  27. L. Meissner, P. Malinowski, Phys. Rev. A61, 062510 (2000)

    Article  Google Scholar 

  28. K. Jankowski, P. Malinowski, Chem. Phys. Lett.205, 471 (1993)

    Article  CAS  Google Scholar 

  29. M. A. Haque, D. Mukherjee, J. Chem. Phys.80, 5058 (1984)

    Article  CAS  Google Scholar 

  30. M. Musiał , L. Meissner, S. A. Kucharski, R. J. Bartlett, J. Chem. Phys.122, 224110 (2005)

    Article  CAS  Google Scholar 

  31. M. MusiaВ, R. J. Bartlett, J. Chem. Phys.129, 044110 (2008)

    Article  CAS  Google Scholar 

  32. M. MusiaВ, R. J. Bartlrtt, J. Chem. Phys.129, 134105 (2008)

    Article  CAS  Google Scholar 

  33. A. Banerjee, J. Simons, J. Chem. Phys.76, 4548 (1982)

    Article  CAS  Google Scholar 

  34. H.-J. Werner, P. J. Knowles, J. Chem. Phys.89, 5803 (1988)

    Article  CAS  Google Scholar 

  35. K. Woliń ski, P. Pulay, J. Chem. Phys.90, 3647 (1989)

    Article  Google Scholar 

  36. K. Andersson, P. A. Malmqvist, B. O. Roos, J. Chem. Phys.96, 1218 (1992)

    Article  CAS  Google Scholar 

  37. P.-O. Lö wdin, J. Math. Phys.3, 969 (1962)

    Article  Google Scholar 

  38. I. Lindgren, J. Phys. B7, 2441 (1974)

    Article  CAS  Google Scholar 

  39. J. Má š ik, I. HubaǍ, Adv. Quantum Chem.31, 75 (1999)

    Google Scholar 

  40. S. Berkovic, U. Kaldor, Chem. Phys. Lett.199, 42 (1992)

    Article  CAS  Google Scholar 

  41. I. Lindgren, Phys. Scr.32, 611, 291 (1985)

    Article  Google Scholar 

  42. A. Haque, U. Kaldor, Chem. Phys. Lett.120, 261 (1985)

    Article  CAS  Google Scholar 

  43. S. Pal, M. Rittby, R. J. Bartlett, D. Sinha, D. Mukherjee, Chem. Phys. Lett.137, 273 (1987)

    Article  CAS  Google Scholar 

  44. J. Paldus, J. Čí žek, Adv. Quantum Chem.9, 105 (1975)

    Article  CAS  Google Scholar 

  45. M. Noojen, J. Chem. Phys.104, 2638 (1996)

    Article  Google Scholar 

  46. D. Mukherjee, Pramãna12, 203 (1979)

    Article  CAS  Google Scholar 

  47. L. Meissner, J. Chem. Phys.103, 8014 (1995)

    Article  CAS  Google Scholar 

  48. D. Sinha, S. K. Mukhopadhyay, R. Chaudhuri, D. Mukherjee, Chem. Phys. Lett.154, 544 (1989)

    Article  Google Scholar 

  49. M. Musiał , R. J. Bartlett, J. Chem. Phys.121, 1670 (2004)

    Article  CAS  Google Scholar 

  50. K. Hirao, H. Nakatsuji, J. Comput. Phys.45, 246 (1982)

    Article  Google Scholar 

  51. E. R. Davidson, J. Comput. Phys.17, 87 (1975)

    Article  Google Scholar 

  52. T. H. Dunning Jr., J. Chem. Phys.90, 1007(1989); R. A. Kendall, T. H. Dunning Jr., R. J. Harrison, J. Chem. Phys.96, 6796 (1992); D. E. Woon, T. H. Dunning Jr., J. Chem. Phys.103, 4572 (1995)

    Google Scholar 

  53. A. J. Sadlej, Collect. Czech. Chem. Commun.53, 1995 (1988)

    Article  CAS  Google Scholar 

  54. K. P. Huber, G. Herzberg, inConstants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979)

    Google Scholar 

  55. X. Li, J. Paldus, J. Chem. Phys.124, 034112 (2006)

    Article  CAS  Google Scholar 

  56. O. Christiansen, H. Koch, P. Jørgensen, J. Olsen, Chem. Phys. Lett.256, 185 (1996)

    Article  CAS  Google Scholar 

  57. A. Barbe, C. Secroun, P. Jouve, J. Mol. Spectrosc.49, 171 (1974)

    Article  CAS  Google Scholar 

  58. T. Tanaka, Y. Morino, J. Mol. Phys.33, 538 (1970)

    CAS  Google Scholar 

  59. K.-H. Thunemann, S. D. Peyerimhoff, R. J. Buenker, J. Mol. Spectrosc.70, 432 (1978)

    Article  CAS  Google Scholar 

  60. A. Banichevich, S. D. Peyerinhoff, Chem. Phys.174, 93 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support during the completion of this work. One of the authors (M.M.) acknowledges the financial support by the Ministry of Science and Higher Education under Grant No. N N204 218934.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Meissner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Meissner, L., Musiał, M. (2010). Intermediate Hamiltonian Formulations of the Fock-Space Coupled-Cluster Method: Details, Comparisons, Examples. In: Cársky, P., Paldus, J., Pittner, J. (eds) Recent Progress in Coupled Cluster Methods. Challenges and Advances in Computational Chemistry and Physics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2885-3_15

Download citation

Publish with us

Policies and ethics