Chalcogenide Glasses Selected as a Model System for Studying Thermal Properties

  • Zdeněk ČernošekEmail author
  • Eva Černošková
  • Jana Holubová
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)


Chalcogenide glasses have been intensively studied from the seventieth of twentieth century as the important new class of promising high-tech materials for semiconducting devices and infrared optics. Chalcogenide glasses are formed by chalcogens, stoichiometric chalcogenides, e.g. germanium and/or arsenic sulfides or selenides or by non-stoichiometrics alloys whose composition (and physicochemical properties) can be modified in broad ranges. They have unique optical properties – low phonon energies as compared with oxide glasses, high refractive index, infrared luminescence and so on. The advantage of many chalcogenide glasses is that they can be obtained using very simple technologies.


Differential Scanning Calorimetry Glass Transition Glass Transition Temperature Temperature Step Chalcogenide Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported continuously by the project of the Ministry of Education of the Czech Republic MSM 0021627501.


  1. 1.
    Schawe JEK (1995) Principles for the interpretation of modulated temperature DSC measurements. Part 1. Glass transition. Thermochim Acta 261:183–194CrossRefGoogle Scholar
  2. 2.
    Modulated DSC Compendium (1995) TA InstrumentsGoogle Scholar
  3. 3.
    Wunderlich B (1997) The heat capacity of polymers. Thermochim Acta 300:43–65CrossRefGoogle Scholar
  4. 4.
    Simon SL (2001) Temperature-modulated differential scanning calorimetry: theory and application. Thermochim Acta 374:55–71CrossRefGoogle Scholar
  5. 5.
    Merzyakov M, Schick C (2001) Step response analysis in DSC – a fast way to generate heat capacity spektra. Thermochim Acta 380:5–12CrossRefGoogle Scholar
  6. 6.
    Avramov I, Gutzow I (1988) Heating rate and glass transition temperature. J Non-Cryst Solids 104:148–150CrossRefGoogle Scholar
  7. 7.
    Grenet J, Larmagnac JP, Michon P, Vautier C (1981) Relaxation structurelle dans les couches minces de sélénium amorphe au dessous de la température de transition vitreuse. Thin Solid Films 76:53–60CrossRefGoogle Scholar
  8. 8.
    Kovacs AJ, Hutchinson JM (1979) Isobaric thermal behavior of glasses during uniform cooling and heating: dependence of the characteristic temperatures on the relative contributions of temperature and structure to the rate of recovery. II. A one-parameter model approach. J Polym Sci 17:2031–2058Google Scholar
  9. 9.
    Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Analysis of structural relaxation in glass using rate heating data. J Am Ceram Soc 59:12–16CrossRefGoogle Scholar
  10. 10.
    Grenet J, Saiter JM, Vautier C, Bayard J (1992) The Tg displacement measurements: a way to foresee the physical behaviour and the use of glassy polymers. J Therm Anal 38:557–565CrossRefGoogle Scholar
  11. 11.
    Derrey T, Saiter JM, Larmagnac JP, Vautier C (1985) Structural relaxation below Tg of amorphous germanium-selenium alloys. Mater Lett 3:308–310CrossRefGoogle Scholar
  12. 12.
    Kovacs AJ (1963) Glass transition in amorphous polymer: phenomenological study. Adv Polym Sci 3:394–505CrossRefGoogle Scholar
  13. 13.
    Lasocka M (1976) Thermal stability of Ge–As–Te–In glasses. Mat Sci Eng 23:173–177CrossRefGoogle Scholar
  14. 14.
    Černošek Z, Holubová J, Černošková E, Liška M (2002) Enthalpic relaxation and the glass Transition. J Optoelectron Adv Mater 4:489–503Google Scholar
  15. 15.
    Holubová J, Černošek Z, Černošková E (2005) The study of the glass transition by the StepScan DSC technique. J Optoelectron Adv Mater 7:2671–2676Google Scholar
  16. 16.
    Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169:211–266CrossRefGoogle Scholar
  17. 17.
    Moynihan CT (1995) Structure, dynamics and properties of silicate melts. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Reviews in mineralogy, vol 32. Mineralogical Society of America, Washington, DC, pp 1–19Google Scholar
  18. 18.
    Tool AQ (1948) Effect of heat-treatment on the density and constitution of high-silica glasses of the borosilicate type. J Am Ceram Soc 31:177–180CrossRefGoogle Scholar
  19. 19.
    Suga H (2000) Prospects of materials science: from crystalline to amorphous solids. J Therm Anal Calorim 60:957–974CrossRefGoogle Scholar
  20. 20.
    Elliott SR (1990) Physics of amorphous materials, 2nd edn. Longman Scientific and Technical, EssexGoogle Scholar
  21. 21.
    Angell CA (1991) Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems. J Non-Cryst Solids 131–133:13–31CrossRefGoogle Scholar
  22. 22.
    Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–264CrossRefGoogle Scholar
  23. 23.
    Garn PD (1965) Thermoanalytical methods. Academic, New York, p 194Google Scholar
  24. 24.
    Naraynaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–498CrossRefGoogle Scholar
  25. 25.
    Gutzow I, Schmelzer J (1995) The vitreous state. Springer, BerlinGoogle Scholar
  26. 26.
    Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200–13212CrossRefGoogle Scholar
  27. 27.
    Brunacci A, Cowie JMG, Fergusson R, McEwen IJ (1997) Enthalpy relaxation in glassy polystyrenes – part 1. Polymer 38:751CrossRefGoogle Scholar
  28. 28.
    Montserrat S, Gomez Ribelles J, Meseguer JM (1998) The application of a new configurational entropy model to the structural relaxation in an epoxy resin. Polymer 39:3801–3807CrossRefGoogle Scholar
  29. 29.
    Ducroux J-P, Rekhson SM, Merat FL (1994) Structural relaxation in thermorheologically complex materials. J Non-Cryst Solids 172–174:541–553CrossRefGoogle Scholar
  30. 30.
    Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glassforming liquids and amorphous solids. J Appl Phys 88:3113–3157CrossRefGoogle Scholar
  31. 31.
    Atkinson JR, Hay JN, Jenkins MJ (2002) Enthalpic relaxation in semi-crystalline PEEK. Polymer 43:731–735CrossRefGoogle Scholar
  32. 32.
    Bailey NA, Hay JN, Price DM (2001) A study of enthalpic relaxation of poly(ethylene terephthalate) by conventional and modulated temperature DSC. Thermochim Acta 367–368:425–428CrossRefGoogle Scholar
  33. 33.
    Scherer GW (1991) Glass formation and relaxation. In: Zarzycki J (ed) Materials science and technology, vol 9. VCH, Cambridge, pp 119–174Google Scholar
  34. 34.
    Richardson MJ, Savill AG (1975) Derivation of accurate glass transition temperatures by differential scanning calorimetry. Polymer 16:753–757CrossRefGoogle Scholar
  35. 35.
    Mazurin OV (1977) Relaxation phenomena in glass. J Non-Cryst Solids 25:129–169CrossRefGoogle Scholar
  36. 36.
    Mora MT (1997) Chalcogenide glasses. In: Thorpe MF, Mitkova MI (eds) Amorphous insulators and semiconductors. Kluwer Academic, London, pp 45–69Google Scholar
  37. 37.
    Hutchinson JM, Kumar P (2002) Enthalpy relaxation in polyvinyl acetate. Thermochim Acta 391:197–217CrossRefGoogle Scholar
  38. 38.
    Pappin AJ, Hutchinson JM, Ingram MD (1994) The appearance of annealing pre-peaks in inorganic glasses: new experimental results and theoretical interpretation. J Non-Cryst Solids 172–174:584–591CrossRefGoogle Scholar
  39. 39.
    Saiter JM, Ledru J, Hamou A, Zumailan A (1997) Dependence of the glass transition temperature on the heating rate and structure of chalcogenide glasses. Mater Lett 33:91–96CrossRefGoogle Scholar
  40. 40.
    Moynihan CT, Lee SK, Tatsumisago M, Minami T (1996) Estimation of activation energies for structural relaxation and viscous flow from DTA and DSC experiments. Thermochim Acta 280:153–162CrossRefGoogle Scholar
  41. 41.
    Angell CA (1988) Perspective on the glass transition. J Phys Chem Solids 49:863–871CrossRefGoogle Scholar
  42. 42.
    Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99:4201–4209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Zdeněk Černošek
    • 1
    Email author
  • Eva Černošková
    • 2
  • Jana Holubová
    • 1
  1. 1.Faculty of Chemical Technology Department of General and Inorganic ChemistryUniversity of PardubicePardubiceCzech Republic
  2. 2.Joint Laboratory of Solid State Chemistry of Institute of Macromolecular ChemistryAcademy of Sciences, Czech Republic and University of PardubicePardubiceCzech Republic

Personalised recommendations