Skip to main content

Solid Forms of Pharmaceutical Molecules

  • Chapter
  • First Online:
Glassy, Amorphous and Nano-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 8))

Abstract

A drug discovery is characterized by two stages. The first in terms of time is called “lead structure”, followed by a so called “drug candidate” stage. The lead structure stage involves selecting the optimum molecule of the pharmaceutical, while drug candidate stage means selecting the optimum solid form. Usually, five to ten candidates pass to the drug candidate stage and the result is the selection of the final solid API (Active Pharmaceutical Ingredience) for the ensuing formulation of the solid dosage form. The lead structure stage concerns only the discovery of the original drug, the drug candidate stage may concern also generics (a drug which is bioequivalent with original and is produced and distributed after the patent protection of the original).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hájková M, Kratochvíl B, Rádl S (2008) Atorvastatin – the world’s best selling drug. Chem Listy 102:3–14

    Google Scholar 

  2. Childs SL, Hardcastle KI (2007) Cocrystals of piroxicam with carboxylic acid. Cryst Growth Des 7:1291–1304

    Article  CAS  Google Scholar 

  3. Bingham AL, Hughes DS, Hursthouse MB, Lancaster RW, Tavener S, Threlfall TL (2001) Over one hundred solvates of sulfathiazole. Chem Commun 7:603–604

    Article  Google Scholar 

  4. http://www.fda.gov/Food/FoodIngredientsPackaging/GenerallyRecognizedasSafeGRAS/GRASListings/default.htm

  5. http://www.pharmacy.wisc.edu/SOPDir/PersonDetails.cfm?ID=32

  6. Bernstein J (2002) Polymorphism in molecular crystals. Oxford University Press, New York, p 298

    Google Scholar 

  7. Bauer J, Sponton S, Henry R, Quick J, Dziki W, Porter W, Morfia J (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18:859–866

    Article  CAS  Google Scholar 

  8. Pudipeddi M, Serajuddin ATM (2005) Trends in solubility of polymorphs. J Pharm Sci 94:929–939

    Article  CAS  Google Scholar 

  9. Bond AD, Boese R, Desiraju GR (2007) On the polymorphism of aspirin. Angew Chem Int Ed 46:615–617

    Article  CAS  Google Scholar 

  10. Steiner T, Kellner G (1994) Crystalline beta-cyclodextrin hydrate at various humidites - fast, continuous, and reversible dehydration studies by X-ray diffraction. J Am Chem Soc 116:5122–5128

    Article  CAS  Google Scholar 

  11. Etter MC, Urbanczyk-Lipkowska Z, Zia-Ebrahimi M, Panunto TW (1990) Hydrogen bond directed cocrystallization and molecular recognition properties of diarylureas. J Am Chem Soc 112:8415–8426

    Article  CAS  Google Scholar 

  12. Hušák M, Kratochvíl B, Císařová I, Cvak L, Jegorov A, Böhm S (2002) Crystal forms of semisynthetic ergot alkaloid terguride. Collect Czech Chem Commun 67:479–489

    Article  Google Scholar 

  13. Stahl PH, Wermuth CG (eds) (2002) Handbook of pharmaceutical salts: properties, selection, and use. Wiley-VCH, Weinheim

    Google Scholar 

  14. http://en.wikipedia.org/wiki/Dextropropoxyphene

  15. Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ (2006) Pharmaceutical co-crystals. J Pharm Sci 95:499–516

    Article  CAS  Google Scholar 

  16. Childs SL, Stahly PG, Park A (2007) The salt-cocrystal continuum: the influence of crystal structure on ionization state. Mol Pharm 4:323–338

    Article  CAS  Google Scholar 

  17. Schultheiss N, Newman A (2009) Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des 9:2950–2967

    Article  CAS  Google Scholar 

  18. Morissete SL, Almarsson Ő, Peterson ML, Remenar J, Read M, Lemmo A, Ellis S, Cima MJ, Gardner CR (2004) High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev 56:275–300

    Article  Google Scholar 

  19. Hickey MB, Peterson ML, Scoppettuolo LA, Morisette SL, Vetter A, Guzman H, Remenar JF, Zhang Z, Tawa MD, Haley S, Zaworotko MJ, Almarsson O (2007) Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm 67:112–119

    Article  CAS  Google Scholar 

  20. Zaworotko MJ (2008) Crystal engineering of cocrystals and their relevance to pharmaceuticals and solid-state chemistry. In: XXI congress of the international union of crystallography, Book of Abstracts C11. Osaka

    Google Scholar 

  21. Jones W (2009) Multicomponent crystals in the development of new solid forms of pharmaceuticals. In: 25. European Crystallographic Meeting (ECM 25), Abstracts p. 102. Istanbul

    Google Scholar 

  22. Hilfiker R (ed) (2006) Polymorphism in the pharmaceutical industry. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  23. Křen V et al (1997) Glycosylation of silybin. J Chem Soc, Perkin Trans 17:2467–2974

    Google Scholar 

  24. Nagarajan R (1993) Structure-activity relationship of vancomycin-type glycopeptide antibiotics. J Antibiot 46:1181–1195

    Article  CAS  Google Scholar 

  25. Hancoek BC, Zografi G (1997) Characteristics and significance of amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12

    Article  Google Scholar 

  26. Teva Pharmaceutical Industries Ltd Patent WO 01/36384 A1

    Google Scholar 

  27. Accolate (2008) http://www.astrazeneca-us.com/pi/accolate.pdf

  28. Accupro (Accupril) (2008) http://www.pfizer.com/files/products/uspi_accupril.pdf

  29. http://www.janssen-cilag.com/product/filtered_list.jhtml?product=none

  30. http://www.merck.com/product/usa/pi_circulars/i/indocin/indocin_cap.pdf

  31. http://www.faqs.org/patents/app/20080293773

  32. http://www.freepatentsonline.com/7244842.html

  33. Parthasaradhi et al Novel polymorphs of imatinib mesylate. Patent US2005/0234069A1

    Google Scholar 

Download references

Acknowledgments

This chapter was written in the framework of the project MSM 2B08021 of the Ministry of Education of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohumil Kratochvíl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kratochvíl, B. (2011). Solid Forms of Pharmaceutical Molecules. In: Šesták, J., Mareš, J., Hubík, P. (eds) Glassy, Amorphous and Nano-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2882-2_8

Download citation

Publish with us

Policies and ethics