Phases of Amorphous, Crystalline, and Intermediate Order in Microphase and Nanophase Systems

  • Bernhard WunderlichEmail author
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)


To describe matter, one can use two levels, the microscopic one, which requires identification on a molecular scale, and the macroscopic one, which can make use of the identification of the phase of the sample. The International Union of Pure and Applied Chemistry, IUPAC, has provided a binding scientific definition of the phase [1]. It is to be “an entity of a material system which is uniform in chemical composition and physical state.”


Heat Capacity Glass Transition Differential Scanning Calorimeter Lamellar Thickness Skeletal Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    McNaught AD, Wilkinson A (1997) IUPAC. Compendium of Chemical Terminology (the “Gold Book”). Blackwell Scientific, Oxford (1997); XML on-line corrected version:, created by Nic M, Jirat J, Kosata B (2006-) updates compiled by Jenkins A, doi: 10.1351/goldbook
  2. 2.
    See, for example, Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin. See also the Computer course: thermal analysis of materials., or
  3. 3.
    Bridgeman PW (1927) The logic of modern physics. MacMillan, New YorkGoogle Scholar
  4. 4.
    Merriam Webster’s Collegiate Dictionary, 11th edn. Merriam-Webster, Inc., Springfield, MA, (2003); see also:
  5. 5.
    Wunderlich B, Grebowicz J (1984) Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules. Adv Polym Sci 60/61:1–59CrossRefGoogle Scholar
  6. 6.
    Wunderlich B, Möller M, Grebowicz J, Baur H (1988) Conformational motion and disorder in low and high molecular mass crystals. Springer, Berlin (Adv Polym Sci 87)CrossRefGoogle Scholar
  7. 7.
    Wunderlich B (1973–1980) Macromolecular physics, vols 1–3. Academic, New York; A pdf reprint with a new Preface and electronically searchable index was republished, available from, or
  8. 8.
    Gibbs JW (1875–1876, 1877–1878) On the equilibrium of heterogeneous substances. Trans. Conn. Acad. III, 108–248 and 343–524. An extended abstract was published in Am J Sci, Ser 3 16:441–458 (1878); reprinted in Bumstead HA, Gibbs van Name R (1961) The Scientific Papers of J Willard Gibbs 1, Thermodynamics. Dover, New YorkGoogle Scholar
  9. 9.
    Hill TL (1962) Thermodynamics of small systems. J Chem Phys 36:3182–3197; see also: Thermodynamics of small systems, Parts I and II. Benjamin, New York (1963, 1964). Reprinted by Dover, New York (1994)Google Scholar
  10. 10.
    For an early discussion see Tammann G (1920) A method for determining the relationship between the melting point of a crystal lamella and its thickness. Z Anorg Allg Chemie 110:166–168; and also Tolman RC (1948) Consideration of the Gibbs theory of surface tension. J Chem Phys 16:758–774Google Scholar
  11. 11.
    For early experiments see Meissner F (1920) The influence of state of division on the melting point. Z Anorg Allg Chemie 110:169–186Google Scholar
  12. 12.
    Eicke H-F (1987) Aqueous nanophases in liquid hydrocarbons stabilized by ionic surfactants. Surf Sci Ser 21:41–92Google Scholar
  13. 13.
    Siegel RW, Ramasamy S, Hahn H, Li Z, Lu T, Gronsky R (1988) Synthesis, characterization, and properties of nanophase titanium dioxide. J Mater Res 3:1367–1372CrossRefGoogle Scholar
  14. 14.
    Chen W, Wunderlich B (1999) Nanophase separation of small and large molecules. Macromol Chem Phys 200:283–311CrossRefGoogle Scholar
  15. 15.
    For a recent description of nanophases see: Wunderlich B (2008) Thermodynamics and properties of nanophases. Thermochim Acta 492:2–15Google Scholar
  16. 16.
    Quoted from the lecture as recorded at:
  17. 17.
    Hirai N, Eyring H (1959) Bulk viscosity in polymeric systems. J Polymer Sci 37:51–70; Bulk viscosity of liquids. J Appl Phys 29:810–816Google Scholar
  18. 18.
    Eyring H (1936) Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J Chem Phys 4:283–291CrossRefGoogle Scholar
  19. 19.
    Frenkel J (1946) Kinetic theory of liquids. Clarendon, OxfordGoogle Scholar
  20. 20.
    Hosemann R (1963) Crystalline and paracrystalline order in high polymers. J Appl Phys 34:25–41CrossRefGoogle Scholar
  21. 21.
    Wunderlich B, Poland D (1963) Thermodynamics of crystalline linear high polymers. II. The influence of copolymer units on the thermodynamic properties of polyethylene. J Polym Sci Part A 1:357–372Google Scholar
  22. 22.
    Bryan RF, Hartley P, Miller RW, Shen M-S (1980) An X-ray study of the p-n-alkoxybenzoic acids. Part VI. Isotypic crystal structures of four smectogenic acids having seven, eight, nine, and ten alkyl chain carbon atoms. Mol Cryst Liq Cryst 62:281–309CrossRefGoogle Scholar
  23. 23.
    The term “Macromolecule” was first used by Staudinger H, Fritschi J (1922) Isoprene and Rubber. V. Reduction of rubber and its constitution. Helv Chim Acta 5:785–806; In his Nobel Lecture of 1953 Staudinger sets the limit of small molecules at 1,000 atoms: Staudinger H (1961) Arbeitserinnerungen, p. 317. Hüthig, HeidelbergGoogle Scholar
  24. 24.
    For a summary of these classifications see Wunderlich B (1999) A classification of molecules and transitions as recognized by thermal analysis. Thermochim Acta 340/41:37–52Google Scholar
  25. 25.
    Mills I, Cvitaš T, Homan K, Kallay N, Kuchitsu K (1993) Quantities, units and symbols in physical chemistry (Green Book, IUPAC), 2nd edn. Blackwell, OxfordGoogle Scholar
  26. 26.
    Nernst WH (1911) The energy content of solids. Ann Physik 36:395–439CrossRefGoogle Scholar
  27. 27.
    Worthington AE, Marx PC, Dole M (1955) Calorimetry of high polymers. III. A new type of adiabatic jacket and calorimeter. Rev Sci Instrum 26:698–702CrossRefGoogle Scholar
  28. 28.
    Gmelin E, Rödhammer P (1981) Automatic low temperature calorimetry for the range 0.3–320 K. J Phys E Sci Instrum 14:223–228CrossRefGoogle Scholar
  29. 29.
    Tan Z-C, Shi Q, Liu B-P, Zhang H-T (2008) A fully automated adiabatic calorimeter for heat capacity measurement between 80 and 400 K. J Therm Anal Calorim 92:367–374CrossRefGoogle Scholar
  30. 30.
    Boller A, Jin Y, Wunderlich B (1994) Heat capacity measurement by modulated DSC at constant temperature. J Therm Anal 42:307–330CrossRefGoogle Scholar
  31. 31.
    Wunderlich B, Jin Y, Boller A (1994) Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta 238:277–293CrossRefGoogle Scholar
  32. 32.
    Wunderlich B (2003) Reversible crystallization and the rigid amorphous phase in semicrystalline macromolecules. Prog Polym Sci 28/3:383–450CrossRefGoogle Scholar
  33. 33.
    Androsch R, Moon I, Kreitmeier S, Wunderlich B (2000) Determination of heat capacity with a sawtooth-type, power-compensated temperature-modulated DSC. Thermochim Acta 357/358:267–278CrossRefGoogle Scholar
  34. 34.
    Androsch R, Wunderlich B (1999) Temperature-modulated DSC using higher harmonics of the Fourier transform. Thermochim Acta 333:27–32CrossRefGoogle Scholar
  35. 35.
    Einstein A (1907) Planck’s theory of radiation and the theory of the specific heat. Ann Physik 22:180–190, 800Google Scholar
  36. 36.
    Sherman J, Ewell RB (1942) A six-place table of the Einstein functions. J Phys Chem 46:641–662CrossRefGoogle Scholar
  37. 37.
    Debye P (1912) To the theory of the specific heat. Ann Physik 39:789–839CrossRefGoogle Scholar
  38. 38.
    Beattie JA (1926) Tables of three dimensional debye functions. J Math Phys (MIT) 6:1–32Google Scholar
  39. 39.
    Schrödinger E (1926) Thermische eigenschaften der stoffe. In: Geiger H, Scheel K, Henning F (eds) Handbuch der physik, vol 10. Springer, BerlinGoogle Scholar
  40. 40.
    Barnes J, Fanconi B (1978) Critical review of vibrational data and force field constants for polyethylene. J Phys Chem Ref Data 7:1309–1321CrossRefGoogle Scholar
  41. 41.
    Tarasov VV (1950) Theory of the heat capacity of chain and layer structures. Zh Fiz Khim 24:111–128; Heat capacity of chain and layer structures 27:1430–1435 (1953); Tarasov VV, Yunitskii GA (1965) Theory of heat capacity of chain-layer structures. Zh Fiz Khim 39:2077–2080Google Scholar
  42. 42.
    Crystals with planar molecules and tables for the two dimensional Debye functions are given by Gaur U, Pultz G, Wiedemeier H, Wunderlich B (1981) Analysis of the heat capacities of group IV chalcogenides using debye temperatures. J Thermal Anal 21:309–326Google Scholar
  43. 43.
    A first analysis of the heat capacity of crystalline polyethylene and tables of one dimensional Debye functions are available in: Wunderlich B (1962) Motion in polyethylene. II. Vibrations in crystalline polyethylene. J Chem Phys 37:1207–1216Google Scholar
  44. 44.
    For initial computer programs and discussions of the fitting of C p of linear macromolecules, see: Cheban YuY, Lau SF, Wunderlich B (1982) Analysis of the contribution of skeletal vibrations to the heat capacity of linear macromolecules. Colloid Polymer Sci 260:9–19Google Scholar
  45. 45.
    Zhang G, Wunderlich B (1996) A new method to fit approximate vibrational spectra to the heat capacity of solids with Tarasov functions. J Therm Anal 47:899–911CrossRefGoogle Scholar
  46. 46.
    The use of 3-, 2-, and 1-dimensional Debye functions is described in: Pyda M, Bartkowiak M, Wunderlich B (1998) Computation of heat capacities of solids using a general Tarasov equation. J Thermal Anal Calorim 52:631–656Google Scholar
  47. 47.
    Grebowicz J, Wunderlich B (1985) On the C p - C v conversion of solid linear macromolecules. J Therm Anal 30:229–236CrossRefGoogle Scholar
  48. 48.
    Pan R, Varma M, Wunderlich B (1989) On the C p to C v conversion for solid linear macromolecules II. J Therm Anal 35:955–966CrossRefGoogle Scholar
  49. 49.
    Gaur U, Shu H-C, Mehta A, Lau S-F, Wunderlich BB, Varma-Nair M, Wunderlich B (1981, 1982, 1983, 1991) Heat capacity and other thermodynamic properties of linear macromolecules. Parts I–X. J Phys Chem, Ref. Data 10:89–117, 119–152, 1001–1049, 1051–1064 ; 11:313–325, 1065–1089; 12:29–63, 65–89, 91–108; 20:349–404; an internet version is available through:
  50. 50.
    Wunderlich B (1995) The athas data base on heat capacities of polymers. Pure Appl Chem 67:1019–1026; see also The advanced thermal analysis system, ATHAS. Shin Netsu Sokuteino Shinpo 1:71–100 (1990)Google Scholar
  51. 51.
    Zhang G, Gerdes S, Wunderlich B (1996) Heat capacities of solid globular proteins. Macromol Chem Phys 197:3791–3806CrossRefGoogle Scholar
  52. 52.
    Pyda M, Wunderlich B (1999) Computation of heat capacities of liquid polymers. Macromolecules 32:2044–2050CrossRefGoogle Scholar
  53. 53.
    Loufakis K, Wunderlich B (1988) Computation of heat capacity of liquid macromolecules based on a statistical mechanical approximation. J Phys Chem 92:4205–4209CrossRefGoogle Scholar
  54. 54.
    Sumpter BG, Noid DW, Liang GL, Wunderlich B (1994) Atomistic dynamics of macromolecular crystals. Adv Polym Sci 116:27–72CrossRefGoogle Scholar
  55. 55.
    Blasenbrey S, Pechhold W (1970) Theory of phase transitions in polymers. Ber Bunsenges 74:784–796Google Scholar
  56. 56.
    Wunderlich B (1962) Motion in polyethylene. III. The amorphous polymer. J Chem Phys 37:2429–2432; Motion in the solid state of high polymers. J Polymer Sci Part C 1:41–64 (1963)Google Scholar
  57. 57.
    Kim Y, Strauss HL, Snyder RG (1989) Conformational disorder in crystalline n-alkanes prior to melting. J Phys Chem 93:7520–7526CrossRefGoogle Scholar
  58. 58.
    Wunderlich B, Pyda M, Pak J, Androsch R (2001) Measurement of heat capacity to gain information about time scales of molecular motion from pico to megaseconds. Thermochim Acta 377:9–33CrossRefGoogle Scholar
  59. 59.
    Herzberg G (1945) Infrared and Raman spectra of polyatomic molecules. Van Nostrand, New YorkGoogle Scholar
  60. 60.
    Ehrenfest P (1933) Phase changes in the ordinary and extended sense classified according to the corresponding singularities of the thermodynamic potential. Proceedings of the Academic Science, Amsterdam vol 36, pp 153–157. Suppl 75b, Mitt Kammerlingh Onnes Inst, LeidenGoogle Scholar
  61. 61.
    Wunderlich B (1964) The melting of defect polymer crystals. Polymer 5:125–134, 611–624Google Scholar
  62. 62.
    Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML, Schick C, Wunderlich B (2006) Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci B 44:1364–1377CrossRefGoogle Scholar
  63. 63.
    Hellmuth E, Wunderlich B (1965) Superheating of linear high-polymer polyethylene crystals. J Appl Phys 36:3039–3044CrossRefGoogle Scholar
  64. 64.
    Wunderlich B, Bodily DM, Kaplan MH (1964) Theory and measurements of the glass-transformation interval of polystyrene. J Appl Phys 35:95–102CrossRefGoogle Scholar
  65. 65.
    Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256CrossRefGoogle Scholar
  66. 66.
    Pyda M, Wunderlich B (2002) Analysis of the residual entropy of amorphous polyethylene at zero Kelvin. J Polymer Sci B 40:1245–1253CrossRefGoogle Scholar
  67. 67.
    Wunderlich B (2008) Thermal properties of aliphatic nylons and their link to crystal structure and molecular motion. J Therm Anal Calorim 93:7–17CrossRefGoogle Scholar
  68. 68.
    Qiu W, Pyda M, Nowak-Pyda E, Habenschuss A, Wunderlich B (2005) Reversibility between glass and melting transitions of poly(oxyethylene). Macromolecules 38:8454–8467CrossRefGoogle Scholar
  69. 69.
    Wunderlich B (2006) The glass transition of polymer crystals. Thermochim Acta 446:128–134CrossRefGoogle Scholar
  70. 70.
    Wunderlich B, Boller A, Okazaki I, Kreitmeier S (1996) Modulated differential scanning calorimetry in the glass transition region II. The mathematical treatment of the kinetics of the glass transition. J Therm Anal 47:1013–1026CrossRefGoogle Scholar
  71. 71.
    Wunderlich B, Okazaki I (1997) Modulated differential scanning calorimetry in the glass transition region, VI. Model calculations based on poly(ethylene terephthalate). J Therm Anal 49:57–70CrossRefGoogle Scholar
  72. 72.
    Suzuki H, Grebowicz J, Wunderlich B (1985) The glass transition of polyoxymethylene. Br Polym J 17:1–3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The University of TennesseeKnoxvilleUSA
  2. 2.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations