Advertisement

Vibration Forms in the Vicinity of Glass Transition, Structural Changes and the Creation of Voids When Assuming the Role of Polarizability

  • Jaroslav ŠestákEmail author
  • Bořivoj Hlaváček
  • Pavel Hubík
  • Jiří J. Mareš
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)

Abstract

Under the certain so called critical temperature [1], the liquid phase becomes factually prearranged and separated into solid-like structures. Certain unoccupied vacancies existing within the space are called voids (in the obvious meaning of opening, hollowness or cavity) and are packed with gas-like molecules (so called “wanderers”). This realism has been known for a long time [2]. Some of the modern structural theories (such as the so called “mode coupling theory” – MCT, which is describing the structural phenomena of liquid state at lower temperatures) are also based on a similar scheme of the local density fluctuation [3]. Such a conjecture of heterogeneities in liquid phase goes back to the assumption of semi-crystalline phase published early by Kauzman [4], as well as to the assumptions of coexistence of gas–liquid semi-structures [5,6] as related to numerous works of Cohen, Grest and Turnbull [7–10].

Keywords

Critical Temperature Nonlinear Oscillator Critical Volume Normal Stress Difference Mode Coupling Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The study was supported by the Czech Science Foundation, Project No. FR-TI 1/335.

References

  1. 1.
    Stanley HE (1971) Introduction to phase transitions and critical phenomena. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquid Wiley, New York, pp 122, 291Google Scholar
  3. 3.
    Gotze W, Sjogren L (1992) Relaxation processes in supercooled liquid. Rep Prog Phys 55:241–376CrossRefGoogle Scholar
  4. 4.
    Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256CrossRefGoogle Scholar
  5. 5.
    Hlaváček B, Šesták J, Koudelka L, Mošner P, Mareš JJ (2005) Forms of vibrations and structural changes in liquid state. J Therm Anal Calorim 80:271–283CrossRefGoogle Scholar
  6. 6.
    Hlaváček B, Mareš JJ (2008) In: Šesták J (ed) Fyzika struktur amorfních a krystalických materiálů (Physics of Strutures of Amorphous and Crystalline Materials). Publ. House Pardubice University, PardubiceGoogle Scholar
  7. 7.
    Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169; Turnbull D, Cohen MH (1961) Free‐volume model of the amorphous phase: glass transition. J Chem Phys 34:120–125Google Scholar
  8. 8.
    Turnbull D (1965) Free volume model of the liquid state. In: Hughel TJ (ed) Liquids: structure, properties and solid interaction. Elsevier, Amsterdam, pp 6–24Google Scholar
  9. 9.
    Cohen MH, Grest GS (1979) Liquid–glass transition, a free-volume approach. Phys Rev B 20:1077–1098, 21, 4113 (1980)CrossRefGoogle Scholar
  10. 10.
    Grest GS, Cohen MH (1981) In: Prigogine I, Rice ST (eds) Advances in chemical physics, vol XLVII. Wiley, New York, pp 455–525CrossRefGoogle Scholar
  11. 11.
    Hlaváček B, Šesták J (2000) Vibration perception of Tg transition. In: Proceedings of the first slovak glass conference. Slovak Glass Society, Trenčín, pp 168–172Google Scholar
  12. 12.
    Hlaváček B, Křesálek V, Souček J (1997) The anharmonicity of motion in the liquid state and its consequences. J Chem Phys 107:4658–4667CrossRefGoogle Scholar
  13. 13.
    Hlaváček B, Šesták J, Mareš JJ (2002) Mutual interdependence of partitions functions in vicinity of Tg transition. J Therm Anal Calorim 67:239CrossRefGoogle Scholar
  14. 14.
    Jackle J (1986) Theory of glass transitions. New thoughts about old facts. Phil Mag 56:113–127CrossRefGoogle Scholar
  15. 15.
    Jackle J (1986) Models of glass transition. Rep Prog Phys 49:171–232CrossRefGoogle Scholar
  16. 16.
    Piccireli R, Litowitz TA (1957) Ultrasonic shear and compressional relaxation in liquid glycerol. J Acoust Soc Am 29:1009CrossRefGoogle Scholar
  17. 17.
    Allen VR, Fox TG (1964) Viscosity–molecular weight dependence for short chain polystyrene. J Chem Phys 41:337CrossRefGoogle Scholar
  18. 18.
    Allen VR, Fox TG (1964) Dependence of the zero shear melt viscosity and related friction coefficient and critical chain length on measurable characteristics of chain polymers. J Chem Phys 41:344CrossRefGoogle Scholar
  19. 19.
    Schulz J (1974) Polymer material science. Prentice-Hall, Englewood Cliffs, p 337Google Scholar
  20. 20.
    Ferry JD (1961) Viscoelastic properties of polymers. Wiley, New York, p 225Google Scholar
  21. 21.
    Bueche F (1956) Viscosity of polymers in concentrated solution. J Chem Phys 20:599–600CrossRefGoogle Scholar
  22. 22.
    Tobolsky AV (1960) Properties and structure of polymers. Wiley, New York, p 75Google Scholar
  23. 23.
    Aklonis JJ, MacKnight WJ, Shen M (1972) Introduction to polymer viscoelasticity. Wiley-Interscience, New York, p 42Google Scholar
  24. 24.
    Wunderlich B, Baur H (1970) Heat capacities of linear high polymers. Springer, BerlinGoogle Scholar
  25. 25.
    Wunderlich B (1960) Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. J Chem Phys 64:1052–1056CrossRefGoogle Scholar
  26. 26.
    Buchenau U, Zorn M (1993) A relation between fast and slow motions in glassy and liquid selenium. Europhys Lett 18:523–528CrossRefGoogle Scholar
  27. 27.
    Heuer A, Spiess HW (1994) Universality of glass transition temperature. J Non-Cryst Solids 176:294CrossRefGoogle Scholar
  28. 28.
    Hlaváček B, Souček J, Prokůpek L, Večeřa M (1997/1998) The thermal entropy concept and Tg transition. J Polym Eng 17:111–137CrossRefGoogle Scholar
  29. 29.
    Surovtsev NV, Wiederich J, Batalov AE, Novikov VN, Ramos MA (2004) Inelastic light scattering in B2O3 glasses with different thermal histories. J Phys Condens Matter 16:223CrossRefGoogle Scholar
  30. 30.
    Novikov VN, Ding Y, Sokolov AP (2005) Correlation of fragility of supercooled liquids with elastic properties of glasses. Phys Rev E 71:061501CrossRefGoogle Scholar
  31. 31.
    Malinovsky VK, Surovtsev NV (2000) Inhomogeneity on the nanometer scale as a universal property of glasses. Glass Phys Chem 26:217–222Google Scholar
  32. 32.
    Donth E (2001) The glass transition, relaxation dynamics in liquids and disordered materials. Springer, BerlinGoogle Scholar
  33. 33.
    Achibat T, Boukenter A, Duval E, Lorentz G, Etienne S (1991) Low-frequency Raman scattering and structure of amorphous polymers: stretching effect. J Chem Phys 95:2949CrossRefGoogle Scholar
  34. 34.
    Duval E, Boukenter A, Achibat T (1990) Vibrational dynamics and the structure of glass. J Phys Condens Matter 2:10227–10234CrossRefGoogle Scholar
  35. 35.
    Porai-Koshitz EA (1964) Structure of glass. In: Proceedings of the 4th All-Union Conference on the Glassy State, LeningradGoogle Scholar
  36. 36.
    Einstein A (1956) In: Furth R (ed) Investigation on the theory of the Brownian movement. Dover, New YorkGoogle Scholar
  37. 37.
    Peitegen HO, Jurgens H, Saupe D (1992) Chaos and fractals, new frontiers of science. Springer, New YorkGoogle Scholar
  38. 38.
    Feigenbaum MJ (1983) Universal behavior in nonlinear systems. Physica D 7:16CrossRefGoogle Scholar
  39. 39.
    Walgraef D (1997) Spatio-temporal pattern formation. Springer, New York, pp 242–301CrossRefGoogle Scholar
  40. 40.
    Chvoj Z, Šesták J, Tříska A (1991) Kinetic phase diagrams; non-equilibrium phase transitions. Elsevier, AmsterdamGoogle Scholar
  41. 41.
    Swiney HL, Gollub JP (1978) Hydrodynamic instabilities and the transition to turbulence. Physics Today 41Google Scholar
  42. 42.
    Rabinowitz MI, Ezersky AB, Weidman PD (2000) The dynamics of patterns. World Scientific, Singapore, pp 239–279Google Scholar
  43. 43.
    Paine HJ (1997) Physics of vibrations and waves. Wiley, New YorkGoogle Scholar
  44. 44.
    Ueda U (1980) New approaches to non-linear dynamics. SIAM, PhiladelphiaGoogle Scholar
  45. 45.
    Tabor M (1989) Chaos and integrability in non-linear dynamics. Wiley, New YorkGoogle Scholar
  46. 46.
    Prigogine I, Stengers I (1984) Order out of chaos. Bantam Books, New YorkGoogle Scholar
  47. 47.
    Kondepudi D, Prigogine I (1998) Modern thermodynamics. Wiley, New York, pp 409–452Google Scholar
  48. 48.
    Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57:397–398CrossRefGoogle Scholar
  49. 49.
    Lorenz EN (1963) Deterministic non-periodic flow. J Atmos Sci 20:130CrossRefGoogle Scholar
  50. 50.
    Šesták J (2004) Heat, thermal analysis and society, Chap. 14 Oscillations modes and modern theories of glassy state. Nucleus, Hradec KrálovéGoogle Scholar
  51. 51.
    Hlaváček B, Shánělová J, Málek J (1999) Discontinuities in amplitudes of particles micromotions characterizing phase transitions in liquid state. Mech Time-Depend Mater 3:351–369CrossRefGoogle Scholar
  52. 52.
    Gurney RW (1949) Introduction to statistical mechanics. Dover, New YorkGoogle Scholar
  53. 53.
    Martienssen O (1910) Über neue Resonanzerscheinungen in Wechselstromkreisen. Phys Z 11:448–460Google Scholar
  54. 54.
    Appleton EV (1924) On the anomalous behavior of vibration galvanometer. Philos Mag Ser 6(41):609–619CrossRefGoogle Scholar
  55. 55.
    Minorsky N (1983) Nonlinear oscillations, vol 47. D. Van Nostrand, Toronto, p 15Google Scholar
  56. 56.
    Haken H (1983) Synergetics. Springer, BerlinCrossRefGoogle Scholar
  57. 57.
    Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw-Hill, New YorkGoogle Scholar
  58. 58.
    Parkhurst HJ Jr, Jonas J (1975) Dense liquids. I. The effect of density and temperature self-diffusion of tetramethylsilane and benzene-d6. J Chem Phys 63:2699–2709Google Scholar
  59. 59.
    Zwanzig R (1983) On the relation self–diffusion and viscosity of liquids. J Chem Phys 79:4507–4508CrossRefGoogle Scholar
  60. 60.
    Bartoš J (1996) Free volume microstructure of amorphous polymers at glass transition temperatures from positron annihilation spectroscopy data. Colloid Polym Sci 274:14CrossRefGoogle Scholar
  61. 61.
    Bartoš J, Banduch P, Šauša O, Krištiaková K, Krištiak J, Kanaya T, Jenniger W (1997) Free volume microstructure and its relationship to the chain dynamics in cis-1,4- polybutadiene as seen by positron annihilation lifetime spectroscopy. Macromolecules 30:6906CrossRefGoogle Scholar
  62. 62.
    Račko D, Chelini R, Cardini G, Bartoš J, Califano S (2005) Insights into positron annihilation lifetime spectroscopy by molecular dynamics simulation. Eur Phys 32:289–297CrossRefGoogle Scholar
  63. 63.
    Jean YC (1990) Positron-annihilation spectroscopy for chemical-analysis – a novel probe for microstructural analysis of polymers. Microchem J 42:72; Jean YC, Deng Q, Nguyen TT (1995) Free-volume hole properties in thermosetting plastics probed by positron annihilation spectroscopy: chain extension chemistry. Macromolecules 28:8840–8844Google Scholar
  64. 64.
    Jean YC (1996) Comments on the paper “Can positron annihilation lifetime spectroscopy measure the free-volume hole size distribution in amorphous polymers?”. Macromolecules 29:5756–5757CrossRefGoogle Scholar
  65. 65.
    Dieterici C (1899) Ueber den kritischen Zustand. Ann Phys 305:685–705CrossRefGoogle Scholar
  66. 66.
    van der Waals JD (1873) Over de continuiteit van den gas/en Vloeisfoestand. PhD thesis, LeidenGoogle Scholar
  67. 67.
    Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64CrossRefGoogle Scholar
  68. 68.
    Johari GP (2000) Contributions to the entropy of a glass and liquid, and the dielectric relaxation time. J Chem Phys 112:7518–7523CrossRefGoogle Scholar
  69. 69.
    Frenkel J (1955) Kinetic theory of liquids. Dover, New Jersey, p 12Google Scholar
  70. 70.
    Eyring H, Shik Jhon M (1969) Significant liquid structures. Wiley, New YorkGoogle Scholar
  71. 71.
    Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New YorkGoogle Scholar
  72. 72.
    Le Fevre RJW (1965) Refractivity of organic molecules. Adv Phys Org Chem 3:1–35CrossRefGoogle Scholar
  73. 73.
    Verkoczy B (1986) Saskoil Rep No.113. Saskoil, Regina, SaskatchewanGoogle Scholar
  74. 74.
    Donth E (1982) The size of cooperatively rearranging regions at the glass transition. J Non-cryst Solids 53:325–330CrossRefGoogle Scholar
  75. 75.
    Dollase T, Graf R, Heuer A, Spiess HW (2001) Local order and chain dynamics in molten polymer blocks revealed by proton double-quantum NMR. Macromolecules 34:298–309CrossRefGoogle Scholar
  76. 76.
    Bartoš J, Šauša O, Krištak J, Blochowitz T, Rossler E (2001) Free-volume microstructure of glycerol and its supercooled liquid-state dynamics. J Phys Condens Matter 13:11473–11484CrossRefGoogle Scholar
  77. 77.
    Beiner M, Huth H, Schroter K (2001) Crossover region of dynamics glass transition: general trends and individual aspects. J Non-cryst Solids 279:126–135CrossRefGoogle Scholar
  78. 78.
    Hempel E, Beiner M, Renner T, Donth E (1996) Linearity of heat capacity step near the onset of α glass transition in poly-(n-alkylmethacrylates). Acta Polym 47:525CrossRefGoogle Scholar
  79. 79.
    Mohanty U (1994) Inhomogeneities and relaxation in supercooled liquids. J Chem Phys 100:5905–5909CrossRefGoogle Scholar
  80. 80.
    Reinsberg SA, Qiu XH, Wilhelm M, Spiess HW, Ediger MD (2001) Length scale of dynamic heterogeneity in supercooled glycerol near Tg. J Chem Phys 114:7299–7302CrossRefGoogle Scholar
  81. 81.
    Doi M, Edwards SF (1986) Theory of polymer dynamics. Clarendon, OxfordGoogle Scholar
  82. 82.
    Bueche F (1962) Physical properties of polymers. Interscience, New York, p 106Google Scholar
  83. 83.
    Hlaváček B, Černošková E, Prokůpek L, Večeřa M (1996) The transition points in liquid state and their molecular modeling. Thermochim Acta 280/281:417Google Scholar
  84. 84.
    Lide DR (2002) Handbook of chemistry and physics, vol 10, 82nd edn., pp 160–174. CRC Press LLC, Washington DC; DiMarzio EA, Dowell F (1979) Theoretical prediction of the specific heat of polymer glasses. J Appl Phys 50:6061–6066Google Scholar
  85. 85.
    Eisenberg A (1993) The glassy state and the glass transition. In: Mark JE (ed) Physical properties of polymers. United Book, BaltimoreGoogle Scholar
  86. 86.
    Boyer RF (1963) The relation of transition temperatures to chemical structure in high polymers. Rubber Chem Technol 36:1303–1421CrossRefGoogle Scholar
  87. 87.
    Boyer RF (1973) ΔCP Tg and related quantities for high polymers. J Macromol Sci Phys B 7:487–501CrossRefGoogle Scholar
  88. 88.
    Helfand E (1984) Dynamics of conformational transitions in polymers. Science 226:647–650CrossRefGoogle Scholar
  89. 89.
    Meier DJ (1978) Molecular basis of transitions and relaxations. Gordon and Breach Science, LondonGoogle Scholar
  90. 90.
    van Krevelen DV, Hoftyzer PJ (1979) Properties of polymers. Wiley, New YorkGoogle Scholar
  91. 91.
    Curtis AJ (1960) Dielectric properties of polymeric systems. In: Birks J, Schulman JH (eds) Progress in dielectrics, vol 2. Wiley, New York, p 29Google Scholar
  92. 92.
    Ilavský M, Hasa J, Janáček J (1968) Secondary and tertiary β and γ maxima in amorphous polymers. Collect Czech Chem C 33:3197CrossRefGoogle Scholar
  93. 93.
    Rossler E (1990) Indication for change of diffusion mechanism in supercooled liquids. Phys Rev Lett 65:1595–1598CrossRefGoogle Scholar
  94. 94.
    Blochowitz T, Brodin A, Rossler EA (2006) Evolution of the dynamic susceptibility in supercooled liquids and glasses. In: Coffey T, Kalmykov YP (eds) Advances in chemical physics, vol 133, part A, Fractals, diffusion, and relaxation in disordered complex systems. Wiley, Hoboken, pp 127–256Google Scholar
  95. 95.
    Brodin A, Rossler EA (2005) Depolarized light scattering study of glycerol. Eur Phys J B 44:3–14CrossRefGoogle Scholar
  96. 96.
    Rossler E (1990) Indications for a change of diffusion mechanism in supercooled liquids. Phys Rev Lett 65:1595–1598; Rossler E (1992) Comment on “decoupling of time scales of motion in polybutediene close to the glass transition. Phys Rev Lett 69:1620Google Scholar
  97. 97.
    Sokolov AP, Rossler E, Kisliuk A, Quitman D (1963) Dynamics of strong and fragile glass formers: differences and correlation with low-temperature properties. Phys Rev Lett 71:2062–2065CrossRefGoogle Scholar
  98. 98.
    Vogel M, Rossler E (2000) On the nature of slow β-process in simple glass formers: A2H NMR study. J Phys Chem B 104:4285–4287CrossRefGoogle Scholar
  99. 99.
    Wiederich J, Surovtsev NV, Rossler E (2000) A comprehensive light study of the glass former toluene. J Chem Phys 113:1143–1153CrossRefGoogle Scholar
  100. 100.
    Vogel M, Rossler E (2001) Slow β process in simple organic glass formers studied by one- and two-dimensional 2H nuclear magnetic resonance. J Chem Phys 114:5802–5815, and 115: 10883–10891CrossRefGoogle Scholar
  101. 101.
    Gibbs JH (1956) Nature of glass transition in polymers. J Chem Phys 25:185–186; DiMarzio EA, Gibbs JH (1963) Molecular interpretation of glass temperature depression by plasticizers. J Polym Sci A 1:1417–1428Google Scholar
  102. 102.
    Gibbs JH, DiMarzio EA (1958) Nature of glass transition and the glassy state. J Chem Phys 28:373–383CrossRefGoogle Scholar
  103. 103.
    Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Appl Phys 43:139–146Google Scholar
  104. 104.
    Goldstein M (1976) Viscous liquids and glass transition. Sources of the excess specific heat of the liquid. J Chem Phys 64:4767–4767; Goldstein M (1977) Viscous liquids and glass transition. Molecular mechanism for a thermodynamic second order transition. J Chem Phys 67:2246–2253Google Scholar
  105. 105.
    Johari GP (1985) Low frequency molecular relaxations in disordered solids. J Chim Phys 82:283–291Google Scholar
  106. 106.
    Prevosto D, Capaccioli S, Lucchesi M, Rolla PA, Ngai KL (2009) Does the entropy and volume dependence of the structural α-relaxation originate from the Johari–Goldstein β-relaxation? In: Wondraczek L, Conradt R (eds) Glass and entropy, special issue of J Noncryst Solids 355:705–711Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jaroslav Šesták
    • 1
    Email author
  • Bořivoj Hlaváček
    • 2
  • Pavel Hubík
    • 3
  • Jiří J. Mareš
    • 3
  1. 1.New Technologies Research CentreUniversity of West BohemiaPlzeňCzech Republic
  2. 2.University of PardubicePardubiceCzech Republic
  3. 3.Division of Solid-State PhysicsInstitute of Physics of the Academy of Sciences ČR, v.v.i.PrahaCzech Republic

Personalised recommendations