Advertisement

Historical Roots and Development of Thermal Analysis and Calorimetry

  • Jaroslav ŠestákEmail author
  • Pavel Hubík
  • Jiří J. Mareš
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)

Abstract

Apparently, the first person which used a thought experiment of continuous heating and cooling of an illustrative body was curiously the Czech thinker and Bohemian educator [1], latter refugee Johann Amos Comenius (Jan Amos Komenský, 1592–1670) when trying to envisage the properties of substances. In his “Physicae Synopsis”, which he finished in 1629 and published first in Leipzig in 1633, he showed the importance of hotness and coldness in all natural processes. Heat (or better fire) is considered as the cause of all motions of things. The expansion of substances and the increasing the space they occupy is caused by their dilution with heat. By the influence of cold the substance gains in density and shrinks: the condensation of vapor to liquid water is given as an example. Comenius also determined, though very inaccurately, the volume increase in the gas phase caused by the evaporation of a unit volume of liquid water. In Amsterdam in 1659 he published a focal but rather unfamiliar treatise on the principles of heat and cold [2], which was probably inspired by the works of the Italian philosopher Bernardino Telesius. The third chapter of this Comenius’ book was devoted to the description of the influence of temperature changes on the properties of substances.

Keywords

Differential Thermal Analysis Differential Scanning Calorimeter Heat Engine Motive Power Adiabatic Calorimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Šesták J, Mareš JJ (2007) From caloric to stathmograph and polarography. J Therm Anal Calorim 88:763–768CrossRefGoogle Scholar
  2. 2.
    Comenius JA (1659) Disquisitiones de Caloris et Frigoris Natura. J. Jansson, AmsterdamGoogle Scholar
  3. 3.
    Šesták J (1984) Měření termofyzikálních vlastností pevných látek. Academia, Praha; English transl.: Thermophysical Properties of Solids. Elsevier, Amsterdam; Russian transl.: Teoreticheskyj termicheskyj analyz. Mir, Moscow (1988)Google Scholar
  4. 4.
    Šesták J, Mackenzie RC (2001) Heat/fire concept and its journey from prehistoric time into the third millennium. J Therm Anal Calorim 64:129–147CrossRefGoogle Scholar
  5. 5.
    Mackenzie RC, Proks I (1985) Comenius and Black: progenitors of thermal analysis. Thermochim Acta 92:3–14CrossRefGoogle Scholar
  6. 6.
    Šesták J (2005) Some historical aspects of thermal analysis: origins of Termanal, CalCon and ICTA. In: Klein E, Smrckova E, Simon P (eds) Proceedings of International Conference on Thermal Analysis “Termanal”. Publishing House of the Slovak Technical University, Bratislava, p 3Google Scholar
  7. 7.
    Black J (1803) Lectures on the elements of chemistry. W. Creech, Edinburgh; Germ. transl.: Vorlesungen über Chemie. Crell, Hamburg (1804)Google Scholar
  8. 8.
    Brush SG (1976) The kind of motion we call heat, vol I and II. North Holand, AmsterdamGoogle Scholar
  9. 9.
    Fox R (1971) The caloric theory of gases: from Lavoisier to Regnault. Claredon, OxfordGoogle Scholar
  10. 10.
    Proks I (1991) Evaluation of the knowledge of phase equilibria. In: Chvoj Z, Šesták J, Tříska A (eds) Kinetic phase diagrams. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Proks I (2011) Celok je jednodušší než jeho části. (Whole is simpler than its parts). Publishing House of Slovak Academy of Sciences, BratislavaGoogle Scholar
  12. 12.
    Fourier J-BJ (1822) Theorie analytique de la chaleur. Firmin Didot, ParisGoogle Scholar
  13. 13.
    Barnett MK (1956) The development of thermometry and the temperature concept. Osiris 12:269–341CrossRefGoogle Scholar
  14. 14.
    Favre PA, Silbermann JT (1852) Recherches sur les quantités de chaleur degagées dans les actions chimiques et moléculaires. Ann Chim Phys 34:357–450Google Scholar
  15. 15.
    Mackenzie RC (1984) History of thermal analysis. Special issue of Thermochim Acta 73, Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Thenard L (1836) Treatise of chemistry, 6th edn. Crochard, ParisGoogle Scholar
  17. 17.
    McKie D, Heathcote NHV (1935) The discovery of specific and latent heats. Arnold, LondonGoogle Scholar
  18. 18.
    Socquet JM (1801) Essai sur le calorique. Desray, ParisGoogle Scholar
  19. 19.
    Kelland P (1837) Theory of heat. JJ Deighton, CambridgeGoogle Scholar
  20. 20.
    Lindsay RB (1975) Energy: historical development of the concept. Dowden, StroudburgGoogle Scholar
  21. 21.
    Carnot S (1824) Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Bachelier, Paris, Germ transl.: Ostwald’s Klassiker, Nr. 37, Engelmann, Leipzig (1909), English transl. by R.H. Thurston (ed) (1890) Reflections on the motive power of heat and on machines fitted to develop that power. Wiley, New YorkGoogle Scholar
  22. 22.
    Strouhal Č (1908) Thermika. (Thermics). JČMF, PrahaGoogle Scholar
  23. 23.
    Callendar HL (1911) The caloric theory of heat and Carnot’s principle. Proc Phys Soc London 23:153–189CrossRefGoogle Scholar
  24. 24.
    Cropper WH (1987) Carnot’s function: origins of the thermodynamic concept of temperature. Am J Phys 55:120–129CrossRefGoogle Scholar
  25. 25.
    Mareš JJ (2000) On the development of temperature concept. J Therm Anal Calorim 60:1081–1091CrossRefGoogle Scholar
  26. 26.
    Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J (2008) Phenomenological approach to the caloric theory of heat. Thermochim Acta 474:16–24CrossRefGoogle Scholar
  27. 27.
    Šesták J, Mareš JJ, Hubík P, Proks I (2009) Contribution by Lazare and Sadi Carnot to the caloric theory of heat and its inspirative role in thermodynamics. J Therm Anal Calorim 97:679–683CrossRefGoogle Scholar
  28. 28.
    Clausius R (1876) Mechanische Wärmetheorie. Vieweg und Sohn, BraunschweigGoogle Scholar
  29. 29.
    Muller I (2007) A history of thermodynamics. Springer, BerlinGoogle Scholar
  30. 30.
    Curzon FL, Ahlborn B (1975) Efficiency of a Carnot engine at maximum power output. Am J Phys 43:22–24CrossRefGoogle Scholar
  31. 31.
    Bensande-Vincent B, Stenger I (1996) History of chemistry. Harvard, LondonGoogle Scholar
  32. 32.
    Cardillo P (2002) A history of thermochemistry through the tribulations of its devotees. J Therm Anal Calorim 72:7–22CrossRefGoogle Scholar
  33. 33.
    Šesták J, Proks I, Šatava V, Habersberger K, Brandštetr J, Koráb O, Pekárek V, Rosický J, Vaniš M, Velíšek, J (1986) The history of thermoanalytical and related methods in the territory of present-day Czechoslovakia. Thermochim Acta 100:255–270; Šesták J (1999) The history and future of thermal analysis; thermochemical and thermodynamic background. J Min Metal 35:367–390Google Scholar
  34. 34.
    Šesták J (2004) Heat, thermal analysis and society. Nucleus, Hradec Králové; Science of heat and thermophysical studies: a generalized approach to thermal analysis. Elsevier, Amsterdam (2005)Google Scholar
  35. 35.
    Šesták J (2009) Some historical features focused back to the process of European education revealing some important scientists, roots of thermal analysis and the origin of glass research. In: Šesták J, Holeček M, Málek J (eds) Some thermodynamic, structural and behavioral aspects of materials accentuating non-crystalline states. OPS-ZČU, PlzeňGoogle Scholar
  36. 36.
    Grigull U (1984) Newton’s temperature scale and the law of cooling. Heat Mass Transf 18:195–199Google Scholar
  37. 37.
    Hunt LB (1964) The early history of the thermocouple. Platinum Metals Rev 8:23–28; Drebushchak VA (2009) Universality of the EMF of thermocouples. ThermochimActa 496:50–53; Ott JB, Goates JR (1992) Temperature measurements. In: Rossiter BW, Beatzold RC (eds) Determination of thermodynamic properties. Wiley, New York, pp 451–572Google Scholar
  38. 38.
    Le Chatelier H (1887) De l’action de la chaleur sur les argiles. Bull Soc Franc Minéral 10:204–207Google Scholar
  39. 39.
    Mackezie RC (1982) The story of the platinum-wound electric resistance furnace. Platinum Metals Rev 26:175–183Google Scholar
  40. 40.
    Kayser FX, Patterson JW (1998) Sir William C. Roberts-Austen and his role in the development of binary diagrams and modern physical metallurgy. J Phase Equilib 19:11–18CrossRefGoogle Scholar
  41. 41.
    Roberts-Austen WC (1899) Fifth report to the alloys research committee. Nature 59:566–567, and Proc. Inst. Mech. Eng. 1899, 35Google Scholar
  42. 42.
    Tammann G (1905) Über die Anwendung der thermische Analysen in abnormen Fällen. Z Anorg Chem 45:24–30CrossRefGoogle Scholar
  43. 43.
    Kurnakov NS (1904) Eine neue Form des Registrierpyrometers. Z Anorg Chem 42:184–202; Raboty v oblasti cvetnoj metalurgii p 104, Gos Nautsh Tech Izd, Moskva (1954)Google Scholar
  44. 44.
    Kauffman B, Beck A (1962) Nikolai Semenovich Kurnakov. J Chem Educ 39:44–49CrossRefGoogle Scholar
  45. 45.
    Frenkel J (1946) Kinetic theory of liquids. Oxford University Press, Oxford, and Dower, New York 1950Google Scholar
  46. 46.
    Tammann G (1897) Über die Grenzen des festen Zustandes. Annalen der Physik und Chemie (Wiedemann), Bd. 298/N.F.Bd. 62:280–299; Der Glaszustand. Leopold Voss, Leipzig (1933)Google Scholar
  47. 47.
    Burgess GK (1908) Methods of obtaining cooling curves. Bull Bur Stand 5(S99):199–225Google Scholar
  48. 48.
    White WP (1909) Melting point determination. Am J Sci 28:453–473CrossRefGoogle Scholar
  49. 49.
    Berg LG (1952) Skorostnoj kolichestvennyj fazovyj analyz (Rapid quantitative phase analysis). Akad Nauk, Moscow (in Russian)Google Scholar
  50. 50.
    Piloyan FO (1964) Vedenije v termografiju. (Introduction to thermography). Nauka, Moskva (in Russian)Google Scholar
  51. 51.
    Norton FH (1939) Critical study of the differential thermal methods for the identification of the clay minerals. J Am Ceram Soc 22:54–64; Sykes C (1935) Methods for investigating thermal changes occurring during transformations in solids. Proc R Soc A 148:422–446CrossRefGoogle Scholar
  52. 52.
    Vold MJ (1949) Differential thermal analysis – DTA. Anal Chem 21:683–688CrossRefGoogle Scholar
  53. 53.
    Smyth HT (1951) Temperature distribution during mineral inversion and its significance in DTA. J Am Ceram Soc 34:221–224CrossRefGoogle Scholar
  54. 54.
    Boersma SL (1955) Theory of DTA and new methods of measurement and interpretation. J Am Ceram Soc 38:281–284CrossRefGoogle Scholar
  55. 55.
    Borchadt HJ (1956) Differential thermal analysis. J Chem Educ 33:103–109; Borchard HJ, Daniels F (1957) The application of DTA to the study of reaction kinetics. J Am Chem Soc 79:41–46Google Scholar
  56. 56.
    Mackenzie RC (ed) (1957) The differential thermal investigation of clays. Mineralogical Society, LondonGoogle Scholar
  57. 57.
    Smothers WJ, Chiang Y (1966) Handbook of DTA. CRC Press, New YorkGoogle Scholar
  58. 58.
    Schultze D (1969) Differentialthermoanalyse. VEB Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  59. 59.
    Garn PD (1962) Thermoanalytical methods of investigation. Academic, New YorkGoogle Scholar
  60. 60.
    Wendlandt WW (1964) Thermal methods of analysis. Wiley, New YorkGoogle Scholar
  61. 61.
    Lombardi G (ed) (1977/1981) For better thermal analysis. ICTA Information Booklet, Rome University, RomeGoogle Scholar
  62. 62.
    Šesták J, Šatava V, Wendlandt WW (1973) The study of heterogeneous processes by thermal analysis. Special issue of Thermochim Acta 7(5), Elsevier, AmsterdamGoogle Scholar
  63. 63.
    Šesták J (1979) Thermodynamic basis for the theoretical description and correct interpretation of thermoanalytical experiments. Thermochim Acta 28:197–227CrossRefGoogle Scholar
  64. 64.
    Vogel H (1921) Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys Zeitschr 22:645–646; Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256Google Scholar
  65. 65.
    Hrubý A (1972) Evaluation of glass forming tendency by means of DTA. Czech J Phys B 22:1187–1193; Glass-forming tendency in the GeSx system. Czech J Phys B 23:1263–1272 (1973)Google Scholar
  66. 66.
    Šesták J (1996) Use of phenomenological enthalpy versus temperature diagram (and its derivative – DTA) for a better understanding of transition processes in glasses. In: Šesták J (ed) Vitrification, transformation and crystallization of glasses. Special issue of Thermochim Acta 280/281:175–191 Elsevier, AmsterdamGoogle Scholar
  67. 67.
    Kozmidis-Petrović AF (2010) Theoretical analysis of relative changes of the Hruby, Weinberg, and Lu–Liu glass stability parameters with application on some oxide and chalcogenide glasses. Thermochim Acta 499:54–60CrossRefGoogle Scholar
  68. 68.
    Hutchinson JM (2009) Determination of the glass transition temperatures. J Therm Anal Calorim 98:579–589CrossRefGoogle Scholar
  69. 69.
    Nernst W (1911) Der Energieinhalt fester Stoffe. Ann Phys 341:395–439CrossRefGoogle Scholar
  70. 70.
    Nernst W (1918) Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes. W. Knapp, HalleGoogle Scholar
  71. 71.
    Gmelin E (1987) Low-temperature calorimetry: a particular branch of thermal analysis. Thermochim Acta 110:183–208; Gmelin E, Britt W (1987) Recent progress in low temperature microcalorimetry. Thermochim Acta 119:35–36CrossRefGoogle Scholar
  72. 72.
    Tian A (1923) Utilisation de la méthode calorimétrique en dynamique chimique: emploi d’un microcalorimètre à compensation. Bull Soc Chim Fr 33:427–428; Recherches sur la calorimétrie – Généralisation de la méthode de compensation électrique – Microcalorimétrie. J Chim Phys 30:665–708 (1933)Google Scholar
  73. 73.
    Velíšek J (1978) Kalorimetrické měřící metody. (Calorimetric methods) Chemické listy 72:801–830; Vysokoteplotní kalorimetrie (High-temperature calorimetry). Čs čas fyz A 20:513 (1970)Google Scholar
  74. 74.
    Zielenkiwicz W, Margas E (2002) Theory of calorimetry. Kluwer, Dordrecht; Rouquerol J, Zielenkiewicz W (1986) Suggested practice for classification of calorimeters. Thermochim Acta 109:121–137; Randzio SL (2002) Recent development in calorimetry. Ann Rep Prog Chem, Sect. C 98:157–217Google Scholar
  75. 75.
    Hemminger W, Höhne GWH (1979) Grundlagen der Kalorimetrie. Verlag Chemie Weinheim; Calorimetry: fundamentals and practice. Verlag Chemie, Weinheim (1984)Google Scholar
  76. 76.
    Calvet E, Prat H (1963) Recent progress in microcalorimetry. Pergamon, New York; Oscarson JL, Izatt RM (1992) Calorimetry. In: Rossiter BW, Beatzold RC (eds) Determination of thermodynamic properties. Wiley, New York, pp 573–620Google Scholar
  77. 77.
    Attree RW, Cushing RL, Ladd JA, Pieroni JJ (1958) Differential calorimeter of the Tian-Calvet type, a review. Rev Sci Instrum 29:491–496; Gravelle PC (1972) Heat-flow microcalorimetry and its applications to heterogeneous catalysis. In: Eley DD (series editor) Advances in catalysis and related subjects. vol 22, p 191. Academic, New YorkGoogle Scholar
  78. 78.
    Watson ES, O’Neill MJ, Justin J, Brenner N (1964) A differential scanning calorimeter for quantitative differential thermal analysis. Anal Chem 36:1233–1238; O’Neill MJ (1964) The analysis of a temperature-controlled scanning calorimeter. Anal Chem 36:1238–1245Google Scholar
  79. 79.
    Wunderlich B (2000) Temperature-modulated calorimetry in the 21st century. Thermochim Acta 355:43–57CrossRefGoogle Scholar
  80. 80.
    Faktor MM, Hanks R (1967) Quantitative application of dynamic differential calorimetry. Part 1–Theoretical and experimental evaluation. Trans Faraday Soc 63: 1122–1129; and Part 2 – Heats of formation of the group 3A arsenides. Trans Faraday Soc 63:1130 – 1135Google Scholar
  81. 81.
    Grey AP (1968) Simple generalized theory for analysis of dynamic thermal measurements. In: Porter RS, Johnson JF (eds) Analytical calorimetry. Plenum, New York, vol 1, p 209; In: Proceedings of the 4th ICTA, Thermal Analysis, Akademiai Kiado, Budapest, 1974Google Scholar
  82. 82.
    Holba P, Šesták J, Bárta R (1976) Teorie a praxe DTA/DSC (Theory and practice of DTA/DSC). Silikáty (Prague) 20:83–95; Šesták J, Holba P, Lombardi G (1977) Quantitative evaluation of thermal effects: theory and practice. Annali di Chimica (Roma) 67:73–87Google Scholar
  83. 83.
    Boerio-Goates J, Callen JE (1992) Differential thermal methods. In: Rossiter BW, Beatzold RC (eds) Determination of thermodynamic properties. Wiley, New York, pp 621–718Google Scholar
  84. 84.
    Eyraud MCh (1954) Appareil d’analyse enthalpique différentielle. CR Acad Sci 238:1511–1512Google Scholar
  85. 85.
    Flynn JH (1974) Theory of DSC. In: Porter RS, Johnson JF (eds) Analytical calorimetry. Plenum, New York, p 3 and 17; Thermodynamic properties from differential scanning calorimetry by calorimetric methods. Thermochim Acta 8:69–81Google Scholar
  86. 86.
    Heines PJ, Reading M, Wilburn FW (1998) Differential thermal analysis and differential scanning calorimetry. In: Brown ME (ed) Handbook of thermal analysis and calorimetry, vol 1. Elsevier, Amsterdam, pp 279–361Google Scholar
  87. 87.
    Svoboda H, Šesták J (1975) New system of DTA calibration by the predetermined amount of heat. In: Thermal analysis. Proceedings of the 4th ICTA, vol 3, p 725. Akademiai Kiado, Budapest (1975); In: “TERMANAL”, Proceedings of the 9th SCTA, p PL-31. SVST, Bratislava (1976)Google Scholar
  88. 88.
    Sullivan PF, Seidel G (1968) Steady-state ac-temperature calorimetry. Phys Rev 173:679–685CrossRefGoogle Scholar
  89. 89.
    Reading M (1993) Modulated differential scanning calorimetry: a new way forward in materials characterization. Trends Polym Sci 1:248–253Google Scholar
  90. 90.
    Reading M, Elliot D, Hill VL (1993) A new approach to the calorimetric investigation of physical and chemical transitives. J Therm Anal 40:949–955CrossRefGoogle Scholar
  91. 91.
    Wunderlich B, Jin Y, Boller A (1994) Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta 238:277–293CrossRefGoogle Scholar
  92. 92.
    Proks I, Zlatovský J (1969) Periodická termická analyza (Periodic thermal analysis). Chem Zvesti (Bratislava) 23:620 (in Slovak)Google Scholar
  93. 93.
    Minakov AA, Adamovsky SA, Schick C (2005) Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432:177–185CrossRefGoogle Scholar
  94. 94.
    Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63; Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7CrossRefGoogle Scholar
  95. 95.
    Wunderlich B (2007) Calorimetry of nanophases of macromolecules. Int J Thermophys 28:958–967CrossRefGoogle Scholar
  96. 96.
    Zhang Z, Li JC, Jiang Q (2000) Modelling for size-dependent and dimension-dependent melting of nanocrystals. J Phys D Appl Phys 33:2653–2656CrossRefGoogle Scholar
  97. 97.
    Vanithakumari SC, Nanda KK (2008) Universal relation for the cohesive energy of nanoparticles. Phys Lett A 372:6930–6934CrossRefGoogle Scholar
  98. 98.
    Guisbiers G, Buchaillot L (2009) Universal size/shape-dependent law for characteristic temperatures. Phys Lett A 374:305–308CrossRefGoogle Scholar
  99. 99.
    Beurroies I, Denoyel R, Llewellyn P, Rouquerol J (2004) Melting solidification and capillary condensation: interpretation of thermoporometry data. Thermochim Acta 421: 11–18; Nedelec J-M, Grolier J-PE, Baba M (2006) Thermoporosimetry: a powerful tool to study the cross-linking in gels networks. J Sol-Gel Sci Tech 40:191–200CrossRefGoogle Scholar
  100. 100.
    Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, BerlinGoogle Scholar
  101. 101.
    Reading M, Price DM, Grandy D, Smith RM, Conroy M, Pollock HM (2001) Micro-thermal analysis of polymers: current capabilities and future prospects. Macromol Symp 167:45–55CrossRefGoogle Scholar
  102. 102.
    Hammiche A, Reading M, Pollock HM, Song M, Hourston DJ (1996) Localized thermal analysis using a miniaturized resistive probe. Rev Sci Instrum 67:4268–4275CrossRefGoogle Scholar
  103. 103.
    Price DM, Reading M, Hammiche A, Pollock HM (1999) Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis. Int J Pharm 192:85–96CrossRefGoogle Scholar
  104. 104.
    Hlaváček B, Šesták J, Koudelka L, Mošner P, Mareš JJ (2005) Vibration forms and structural changes in liquid/glassy state. J Therm Anal Calorim 80:271–283CrossRefGoogle Scholar
  105. 105.
    Paulik F (1995) Special trends in thermal analysis. Wiley, Chichester; Balek V, Brown ME (1998) Less common techniques of thermal analysis. In: Brown ME (ed) Handbook of thermal analysis and calorimetry. Elsevier, Amsterdam, vol 1, pp 445–471Google Scholar
  106. 106.
    Sørensen OT (1999) Rate controlled thermal analysis used to study solid-state reactins. J Thermal Anal Calor 56:17–22; Sørensen OT, Rouquerol J (2003) Sample controlled thermal analysis. Kluwer, DordrechtGoogle Scholar
  107. 107.
    Balek V (1984) Emanation thermal analysis. Thermochim Acta 22:1–156; Balek V Tölgyessy J (1984) Emanation thermal analysis and other radiometric emanation methods. Elsevier, AmsterdamGoogle Scholar
  108. 108.
    Mareš JJ, Šesták J (2005) An attempt at quantum thermal physics. J Therm Anal Calorim 82:681–686CrossRefGoogle Scholar
  109. 109.
    Šesták J, Hubík P, Mareš, JJ (2010) Thermal analysis scheme aimed at better understanding of the Earth’s climate changes due to the alternating irradiation. J Thermal Anal Calor, 101:567–575CrossRefGoogle Scholar
  110. 110.
    Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J (2010) Relativistic transformation of temperature and Mosengeil-Ott’s antinomy. Physica E 42:484–487CrossRefGoogle Scholar
  111. 111.
    Kallauner O, Matějka J(1914) Beitrag zu der rationellen Analyse, Sprechsaal 47, 423; Matějka J (1919) Chemické proměny kaolinitu v žáru (Chemical changes of kaolinite on firing) Chemické listy 13, 164–166 and 182–185Google Scholar
  112. 112.
    Gallagher P, McAdie H (eds.) ICTAC celebrates its 40th anniversary. Special issue of ICTAC News – ISSN 1022–2510 (2006)Google Scholar
  113. 113.
    Mackenzie RC (1993) Origin and development of ICTA. J Therm Anal 40:5–28, and ICTA News 8(1), 3 (1975)CrossRefGoogle Scholar
  114. 114.
    Wendlandt WW (1981) How thermochmica acta began: some reflections. Thermochim Acta 50:1–5CrossRefGoogle Scholar
  115. 115.
    Izatt RM, Brown PR, Oscarson JL (1995) The history of the calorimetry conferences 1946-1995. J Chem Thermodyn 27:449–464CrossRefGoogle Scholar
  116. 116.
    Sipowska JT, Izatt RM, Ott JB (2001) The history of the calorimetry conference. Netsu Sokutei (Japanese Journal of TA) 37:17Google Scholar
  117. 117.
    Stull DR (1971) Twenty-five years of calorimetry conferences. Bull Thermodyn Thermochem 14:431–441Google Scholar
  118. 118.
    Keattch CJ, Dollimore D (1993) Studies in the history and development of thermogravimetry. J Therm Anal Calorim 39:97–118CrossRefGoogle Scholar
  119. 119.
    Duval C (1953) Inorganic thermogravimetric analysis. Elsevier, AmsterdamGoogle Scholar
  120. 120.
    Saito H (1962) Thermobalance analysis. Gijitsu Shin, TokyoGoogle Scholar
  121. 121.
    Vallet P (1972) Thermogravimetry. Gauthier-Villars, ParisGoogle Scholar
  122. 122.
    Paulik F, Paulik J (1981) Simultaneous thermoanalytical examination by means of derivatograph. Elsevier, AmsterdamGoogle Scholar
  123. 123.
    Jayaweera SAA, Robens E (2003) The roots of vacuum microbalance techniques and the international conferences on this subject. J Therm Anal Calorim 71:7–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jaroslav Šesták
    • 1
    Email author
  • Pavel Hubík
    • 2
  • Jiří J. Mareš
    • 2
  1. 1.New Technologies Research CentreUniversity of West BohemiaPlzeňCzech Republic
  2. 2.Institute of Physics ASCR, v.v.i.Praha 6Czech Republic

Personalised recommendations