Advertisement

Hotness Manifold, Phenomenological Temperature and Other Related Concepts of Thermal Physics

  • Jiří J. MarešEmail author
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)

Abstract

Although the operative methods of temperature measurement are well-known and described in detail in various practical instructions [1, 2] and discussed in many textbooks [3–10], the systematic treatment of the central concept of thermal physics, the temperature itself, is paradoxically almost lacking in the current literature. The temperature, namely, is there at present defined mostly from the theoretical positions of statistical physics and not as a phenomenological quantity. Nevertheless, the predominant majority of practical measurements in physics, chemistry and technology or in thermal analysis and calorimetry particularly are performed by means of macroscopic devices (thermometers) yielding as a result the phenomenological temperature, and not by means of statistical analysis of properties of ensembles of particles and excitations. It is thus evident that prior to the identification of the temperature defined in the frame of statistical theory with the phenomenological temperature, the latter has to be satisfactorily defined first.

Keywords

Inertial Frame Heat Engine Inertial System Thermal Physic Mechanical Equivalent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Institutional Research Plan of Institute of Physics No AV0Z10100521.

References

  1. 1.
    Preston-Thomas H (1990) The international temperature scale of 1990 (ITS 90). Metrologia 27:Z186–Z193Google Scholar
  2. 2.
    Nieto A, Paul F (1958) Mesure des températures. Éditions Radio, ParisGoogle Scholar
  3. 3.
    Poincaré H (1908) Thermodynamique, 2nd edn. Gauthier-Villars, Paris; Reprint: Éditions J Gabay, Paris (1995)Google Scholar
  4. 4.
    Cullen H (1960) Thermodynamics: an introduction to thermostatics. Wiley, New YorkGoogle Scholar
  5. 5.
    Roberts JK (1950) Heat and thermodynamics, 4th edn. Blackie, GlasgowGoogle Scholar
  6. 6.
    Epstein PS (1954) Textbook of thermodynamics. Wiley, New YorkGoogle Scholar
  7. 7.
    Truesdell C (1969) Rational thermodynamics. McGraw-Hill, New YorkGoogle Scholar
  8. 8.
    Waldram JR (1985) The theory of thermodynamics. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Bailyn M (2002) A survey of thermodynamics. AIP, New YorkGoogle Scholar
  10. 10.
    Blundell SJ, Blundell KM (2008) Concepts in thermal physics. Oxford University Press, New YorkGoogle Scholar
  11. 11.
    Boas M (1949) Hero’s Pneumatica: a study of its transmission and influence. Isis 40:38–48CrossRefGoogle Scholar
  12. 12.
    Hoppe E (1926) Geschichte der Physik. F. Vieweg und Sohn, BraunschweigCrossRefGoogle Scholar
  13. 13.
    Mareš JJ (2000) On the development of the temperature concept. J Therm Anal Calorim 60:1081–1091CrossRefGoogle Scholar
  14. 14.
    Meyer-Bjerrum K (1913) Die Entwicklung des Temperaturbegriffs im Laufe der Zeiten. Vieweg und Sohn, BraunschweigGoogle Scholar
  15. 15.
    Fürth R (1929) Allgemeine Grundlagen der Physik, Prinzipien der Statistik. In: Handbuch der Physik Bd. IV. Springer, BerlinGoogle Scholar
  16. 16.
    Palacios J (1964) Dimensional analysis. Macmillan, LondonGoogle Scholar
  17. 17.
    Black J (1803) Lectures on the elements of chemistry. W. Creech, Edinburgh; Germ transl.: Vorlesungen über Chemie. Crell, Hamburg (1804)Google Scholar
  18. 18.
    Balamuth L, Wolfe HC, Zemansky MW (1941) The temperature concept from the macroscopic point of view. Am J Phys 9:199–203CrossRefGoogle Scholar
  19. 19.
    Keller FJ, Gettys WE, Skove MJ (1993) Physics. McGraw-Hill, New YorkGoogle Scholar
  20. 20.
    Barnett MK (1956) The development of thermometry and the temperature concept. Osiris 12:269–341CrossRefGoogle Scholar
  21. 21.
    Mach E (1896) Die Prinzipien der Wärmelehre. Verlag von J. A. Barth, LeipzigGoogle Scholar
  22. 22.
    Burckhardt F (1867) Die Erfindung des Thermometers und seine Gestaltung im XVII Jahrhundert. BaselGoogle Scholar
  23. 23.
    Boyer CB (1942) Early principles in the calibration of thermometers. Am J Phys 10:176–180CrossRefGoogle Scholar
  24. 24.
    von Oettingen AJ (1894) Abhandlungen über Thermometrie von Fahrenheit, Réaumur, Celsius. Ostwald’s Klassiker No. 57, W. Engelmann, LeipzigGoogle Scholar
  25. 25.
    Cantor G (1895) Beiträge zur Begründung der transfiniten Mengenlehre. Math Ann 46:481–512CrossRefGoogle Scholar
  26. 26.
    Frenkel A (1923) Einleitung in die Mengenlehre. Springer, BerlinGoogle Scholar
  27. 27.
    Huntington EV (1917) The continuum and other types of serial order. Harvard University Press, New York; Reprint: Dover Phoenix Editions, New York (2003)Google Scholar
  28. 28.
    Serrin J (1978) The concepts of thermodynamics. In: de la Penha GM, Medeiros LA (eds) Contemporary developments in continuum mechanics. North-Holland, AmsterdamGoogle Scholar
  29. 29.
    Truesdell C, Bharatha S (1977) Concepts and logic of classical thermodynamics as a theory of heat engines. Springer, New YorkCrossRefGoogle Scholar
  30. 30.
    Nernst W (1926) The new heat theorem. Reprint: Dover, New York (1969)Google Scholar
  31. 31.
    Boas ML (1960) A point of logic. Am J Phys 28:675CrossRefGoogle Scholar
  32. 32.
    Wensel HT (1940) Temperature and temperature scales. J Appl Phys 11:373–387CrossRefGoogle Scholar
  33. 33.
    Carnot S (1824) Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Bachelier, Paris, Germ transl.: Ostwald’s Klassiker, Nr. 37, Engelmann, Leipzig (1909)Google Scholar
  34. 34.
    Larmor J (1918) On the nature of heat, as directly deducible from the postulate of Carnot. Proc R Soc London A 94:326–339CrossRefGoogle Scholar
  35. 35.
    Callendar HL (1911) The caloric theory of heat and Carnot’s principle. Proc Phys Soc London 23:153–189CrossRefGoogle Scholar
  36. 36.
    Cropper WH (1987) Carnot’s function: origins of the thermodynamic concept of temperature. Am J Phys 55:120–129CrossRefGoogle Scholar
  37. 37.
    Truesdell C (1979) Absolute temperatures as a consequence of Carnot’s general axiom. Arch Hist Exact Sci 20:357–380CrossRefGoogle Scholar
  38. 38.
    Thomson W (1848) (Lord Kelvin of Largs): On the absolute thermometric scale founded on Carnot’s theory of the motive power of heat. Philos Mag 33:313–317Google Scholar
  39. 39.
    Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J (2008) Phenomenological approach to the caloric theory of heat. Thermochim Acta 474:16–24CrossRefGoogle Scholar
  40. 40.
    Job G (1972) Neudarstellung der Wärmelehre – die Entropie als Wärme. Akad. Verlagsges, Frankfurt am MainGoogle Scholar
  41. 41.
    Smith CW (1976) Faraday as referee of Joule’s Royal Society paper “On the Mechanical Equivalent of Heat”. Isis 67:444–449CrossRefGoogle Scholar
  42. 42.
    Job G, Lankau T (2003) How harmful is the first law? Ann NY Acad Sci 988:171–181CrossRefGoogle Scholar
  43. 43.
    Helmholtz H (1889) Über die Erhaltung der Kraft. Ostwald’s Klassiker, Nr. 1. Engelmann, LeipzigGoogle Scholar
  44. 44.
    Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J (2010) Relativistic transformation of temperature and Mosengeil-Ott’s antinomy. Physica E 42:484–487CrossRefGoogle Scholar
  45. 45.
    van Kampen NG (1968) Relativistic thermodynamics of moving systems. Phys Rev 173:295–301CrossRefGoogle Scholar
  46. 46.
    Avramov I (2003) Relativity and temperature. Russ J Phys Chem 77:S179–S182Google Scholar
  47. 47.
    von Laue M (1911) Das Relativitätsprinzip. Vieweg und Sohn, BraunschweigGoogle Scholar
  48. 48.
    Møller C (1952) The theory of relativity. Oxford University Press, OxfordGoogle Scholar
  49. 49.
    Planck M (1908) Zur Dynamik Bewegter Systeme. Ann Phys (Leipzig) 331:1–34Google Scholar
  50. 50.
    Rosser WGV (1968) Classical electromagnetism via relativity. Butterworths, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Physics ASCR, v.v.i.Praha 6Czech Republic

Personalised recommendations