Thermophysical Properties of Natural Glasses at the Extremes of the Thermal History Profile

  • Paul ThomasEmail author
  • Jaroslav Šesták
  • Klaus Heide
  • Ekkehard Füglein
  • Peter Šimon
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)


Natural amorphous glassy silicates are widely distributed and are found in quantities that range from micrograms to kilo tonnes and, hence, their occurrence is from microscopic glassy inclusions to “glassy mountains” [1]. These natural glasses have two generic origins which may be generalised as vitreous glasses, formed from the melt state by relatively rapid cooling at cooling rates that inhibit crystal formation, or diagenetic glasses, formed by a dissolution-precipitation mechanism where crystallisation is inhibited by the Ostwald's rule of stepwise petrogenesis [2]. The thermal histories of a range of natural glasses are depicted in the schematic of Fig. 19.1 and vary significantly from the typical conditions used in the glass industry which are optimised between processing speed and energy conservation. In the extremes, tektites like moldavites are formed by extremely fast heating and melting at very high temperatures (> 3,000 K) followed by quenching at extreme cooling rates (≥10 K/s). By contrast the formation of amorphous glasses from mineral diagenesis or biotic processes occurs at much lower temperatures and over longer time periods; the formation of sedimentary opal, for example, occurs at ambient temperatures, it is essentially isothermal, and takes place over long periods of time of the order of months to years.


Silica Sphere Trace Element Ratio Fictive Temperature Rhyolitic Composition Natural Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



High vacuum hot extraction gas analysis by mass spectroscopy


Great Artesian (Australian) Basin


Lunar volcanic theory


Amorphous opal


Cristobalite-tridimite ordered opal


Cristobalite ordered opal


Amorphous gel-like opal


Amorphous network-like opal


Terrestrial impact theory


Thermomechanical analysis


X-ray diffraction


  1. 1.
    Heide K (2007) Die Geheimnisse des “gläsernen Bergs”. Forschung 32Google Scholar
  2. 2.
    Iler RK (1979) The chemistry of silica, solubility, polymerisation, colloid and surface properties, and biochemistry. Wiley, New YorkGoogle Scholar
  3. 3.
    Heide K, Heide G, Kloess G (2001) Glass chemistry of tektites. Planet Space Sci 49:839–844CrossRefGoogle Scholar
  4. 4.
    Lange JM (1995) Lausitzer Moldavite und ihre Fundschichten. Schriftenr f Geowiss 3:7–138Google Scholar
  5. 5.
    Brown LD, Ray AS, Thomas PS (2004) Elemental analysis of Australian amorphous Opals by laser-ablation ICPMS. Neues Jb Miner Monat 2004(9):411–424CrossRefGoogle Scholar
  6. 6.
    Hölzle-Vuynovich A (1992) Petrographische und geochemische Untersuchungen an Schneeflockenobsidianen und verwandtem Material aus den USA, Island und der Osterinsel. Heidelberger geowissenschaftliche Abhandlungen, vol 56. Ruprecht-Karls-Universität Heidelberg, HeidelbergGoogle Scholar
  7. 7.
    Ray A, Sriravindrarajah R, Guerbois J-P, Thomas PS, Border S, Ray HN, Haggman J, Joyce P (2007) Evaluation of waste perlite fines in the production of construction materials. J Therm Anal Calorim 88:279–283CrossRefGoogle Scholar
  8. 8.
    Luft E (1983) Zur Bildung der Moldavite beim Ries-Impakt aus tertiären Sedimenten. Enke Verlag, Stuttgart, p 57Google Scholar
  9. 9.
    Rost R (1972) Vltaviny a tektity. Academia, Prague, p 241Google Scholar
  10. 10.
    Thomas PS, Šesták J, Heide K, Fueglein E, Šimon P (2010) Thermal properties of Australian sedimentary opals and Czech moldavites. J Therm Anal Calorim 99:861–867CrossRefGoogle Scholar
  11. 11.
    Glass BP (1984) Tektites. J Non-Cryst Solids 67:333–344CrossRefGoogle Scholar
  12. 12.
    Izokh EP (1996) Origin of tektites: an alternative to terrestrial impact theory. Chem Erde 56:458–474Google Scholar
  13. 13.
    O’Keefe JA (1976) Tektites and their origin. Elsevier, AmsterdamGoogle Scholar
  14. 14.
    O’Keefe JA (1984) Natural glasses. J Non-Cryst Solids 67:1–17CrossRefGoogle Scholar
  15. 15.
    Heide K, Kletti H (2003) Resistance of natural glass. Glass Sci Technol 76:118–124Google Scholar
  16. 16.
    Koeberl C, Kluger F, Kiesl W (1986) Trace element correlations as clues to the origin of tektites and impactites. Chem Erde 45:1–21, 1Google Scholar
  17. 17.
    Schnetzler CC, Pinson WH Jr (1963) The chemical composition of tektites. In: O’Keefe JA (ed) Tektites. Chicago Press, Chicago, p 101Google Scholar
  18. 18.
    Bouská V (1993) Natural glasses. Academia, PrahaGoogle Scholar
  19. 19.
    Arndt J, Rombach N (1976) Derivation of the thermal history of tektites and lunar glasses from their thermal expansions characteristics. In: Proceedings of the 7th Conference on Lunar Science. pp 1123–1141, Houston GCA Supplement 7Google Scholar
  20. 20.
    Kloess G (2000) Dichtfluktuationen natürlicher Gläser. Habilitation, JenaGoogle Scholar
  21. 21.
    Heide G, Müller B (1999) Zur Struktur von Moldavitglas. Schriften Staatl. Museen Min. Geol. Dresden 10:30–33Google Scholar
  22. 22.
    Kloess G, Heide G (1999) ρ-ρt Geospeedometrie an Tektiten. Schriften Staatl. Museen Min. Geol. Dresden 10:52–54Google Scholar
  23. 23.
    Heide K, Gerth K, Hartmann E (2000) The detection of an inorganic hydrocarbon formation in silicate melts by means of a direct-coupled-evolved-gas-analysis-system (DEGAS). Thermochim Acta 354:165–172CrossRefGoogle Scholar
  24. 24.
    Heide K, Schmidt Ch (2003) Volatiles in vitreous basaltic rims, HSDP 2, Big Island, Hawaii. J Non-Cryst Solids 323:97–103CrossRefGoogle Scholar
  25. 25.
    Jones JB, Sanders JV, Segnit ER (1964) The structure of opal. Nature 4962:991Google Scholar
  26. 26.
    Darragh PJ, Gaskin AJ, Sanders JV (1976) Opals. Sci Am 234(4):84CrossRefGoogle Scholar
  27. 27.
    McOrist GD, Smallwood A (1997) Trace elements in precious and common opals using neutron activation analysis. J Radioanal Nucl Chem 223:9–15CrossRefGoogle Scholar
  28. 28.
    Erel E, Aubriet F, Finqueneisel G, Muller JF (2003) Capabilities of laser ablation mass spectrometry in the differentiation of natural and artificial opal gemstones. Anal Chem 75:6422–6429CrossRefGoogle Scholar
  29. 29.
    Brown LD, Ray AS, Thomas PS (2003) 29Si and 27Al NMR study of amorphous and paracrystalline opals from Australia. J Non-Cryst Solids 332:242–248CrossRefGoogle Scholar
  30. 30.
    Thomas PS, Smallwood AS, Ray AS, Briscoe BJ, Parsonage D (2008) Nanoindentation hardness of banded Australian sedimentary opal. J Phys D Appl Phys 41:074028CrossRefGoogle Scholar
  31. 31.
    Behr HJ, Behr K, Watkins JJ (2000) Cretaceous microbes–producer of black opal at Lightning Ridge, NSW, Australia. Geological Abstracts No. 59. 15th Australian Geological Convention. SydneyGoogle Scholar
  32. 32.
    Pecover SR (1996) A new genetic model for the origin of precious opal. Extended abstracts No. 43. Mesozoic geology of Eastern Australia plate conference. Geo Soc Aust, pp 450–454Google Scholar
  33. 33.
    Devison B (2004) The origin of precious opal – a new model. Aus Gemmologist 22:50–58Google Scholar
  34. 34.
    Brown LD, Thomas PS, Ray AS, Prince K (2006) A SIMS study of the transition metal element distribution between bands in banded Australian sedimentary opal from the lightning ridge locality. Neues Jb Miner Monat 182:193–199Google Scholar
  35. 35.
    Segnit ER, Stevens TJ, Jones JB (1965) The role of water in opal. J Geol Soc Aust 12:211–226CrossRefGoogle Scholar
  36. 36.
    Langer K, Flörke OW (1974) Near infrared absorption spectra (4000–9000 cm–1) of opals and the role of water in these SiO2.nH2O minerals. Fortschr Mineral 52:17–51Google Scholar
  37. 37.
    Brown LD (2005) Characterisation of Australian opals. PhD Thesis, University of Technology, SydneyGoogle Scholar
  38. 38.
    Smallwood AG, Thomas PS, Ray AS (2008) Thermal characterisation of Australian sedimentary and volcanic precious opal. J Therm Anal Calorim 92:91–95Google Scholar
  39. 39.
    Smallwood AG, Thomas PS, Ray AS (2008) The thermophysical properties of Australian opal. Australian Institute of Mining and Mineralogy Publication Series No. 8, pp 557–560Google Scholar
  40. 40.
    Banerjee A, Wenzel T (1999) Black opal from honduras. Eur J Mineral 11:401–408Google Scholar
  41. 41.
    Caucia F, Ghisoli C, Adamo I, Boiocchi M (2008) Opal-C, Opal-CT and Opal-T from Acari. Peru Aust Gemmologist 23:266–271Google Scholar
  42. 42.
    Rondeau B, Fritsch E, Guiraud M, Renac C (2004) Opals from Slovakia (‘Hungarian’ opals): a reassessment of the conditions of formation. Eur J Mineral 16:789–799CrossRefGoogle Scholar
  43. 43.
    Jones JB, Segnit ER (1971) The nature of opal. I. Nomenclature and constituent phases. J Geol Soc Aust 18:57CrossRefGoogle Scholar
  44. 44.
    Williams LA, Crerar DA (1985) Silica diagenesis. II: general mechanisms. J Sediment Petrol 55:312–321Google Scholar
  45. 45.
    Landmesser M (1998) Mobility by metastability: applications. Chem Erde 58:1–22Google Scholar
  46. 46.
    Brown LD, Ray AS, Thomas PS, Guerbois JP (2002) Thermal characteristics of Australian sedimentary opals. J Therm Anal Calorim 68:31–36CrossRefGoogle Scholar
  47. 47.
    Smallwood AG, Thomas PS, Ray AS, Šimon P (2009) A Fickian model for the diffusion of water in Australian sedimentary opal. J Therm Anal Calorim 97:685–688CrossRefGoogle Scholar
  48. 48.
    Heide K, Woermann E, Ulmer G (2008) Volatiles in pillows of the Mid-Ocean-Ridge-Basalt (MORB) and vitreous basaltic rims. Chem Erde 68:353–368CrossRefGoogle Scholar
  49. 49.
    Engelhardt Wv, Luft E, Arndt J, Schock H, Weiskirchner W (1987) Origin of moldavites. Geochim Cosmochim Acta 51:1425–1443CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paul Thomas
    • 1
    Email author
  • Jaroslav Šesták
    • 2
  • Klaus Heide
    • 3
  • Ekkehard Füglein
    • 4
  • Peter Šimon
    • 5
  1. 1.Department of Chemistry and Forensic ScienceUniversity of TechnologySydneyAustralia
  2. 2.Solid-State Physics SectionAcademy of Sciences, Institute of Physics, v.v.i.Praha 6Czech Republic
  3. 3.Chemisch-Geowissenschaftliche FakultatUniversitat JenaJenaGermany
  4. 4.Netzsch-Gerätebau GmbHSelbGermany
  5. 5.Faculty of Chemical and Food Technology, Department of Physical ChemistrySlovak University of TechnologyBratislavaSlovak Republic

Personalised recommendations