Advertisement

Emanation Thermal Analysis as a Method for Diffusion Structural Diagnostics of Zircon and Brannerite Minerals

  • Vladimír BalekEmail author
  • Iraida M. Bountseva
  • Igor von Beckman
Chapter
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)

Abstract

Emanation thermal analysis (ETA) [1–3] based on the measurement of the radon release from samples, is one of the methods used in the diffusion structure diagnostics of solids. Changes in surface morphology and microstructure of solids during their thermal treatments and changes due to chemical, mechanical or radiation interactions can be studied by the emanation thermal analysis method.

Keywords

Emanation Rate Recoil Nucleus Subsurface Defect Emanation Thermal Analysis Structure Irregularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors thank to the Ministry of Education, Youth and Sports of the Czech Republic for the support (Project MSM 2672244501).

References

  1. 1.
    Balek V (1978) Emanation thermal analysis. Thermochim Acta 22:1–156CrossRefGoogle Scholar
  2. 2.
    Balek V (1991) Emanation thermal analysis and its application potential. Thermochim Acta 192:1–17CrossRefGoogle Scholar
  3. 3.
    Balek V, Šubrt J, Mitsuhashi T, Beckman IN, Györyová K (2002) Emanation thermal analysis: ready to fulfil the future needs of materials characterization. J Therm Anal Calorim 67:15–35CrossRefGoogle Scholar
  4. 4.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New YorkGoogle Scholar
  5. 5.
    Beckman IN, Balek V (2002) Theory of emanation thermal analysis XI. Radon diffusion as the probe of microstructure changes in solids. J Therm Anal Calorim 67:49–61CrossRefGoogle Scholar
  6. 6.
    Emmerich WD, Balek V (1973) Simultaneous application of DTA, TG, DTG, and emanation thermal analysis. High Temp-High Press 5:67Google Scholar
  7. 7.
    Balek V, Tölgyessy J (1984) Emanation thermal analysis and other radiometric emanation methods. In: Svehla G (ed) Wilson and Wilson’s comprehensive analytical chemistry, Part XIIC. Elsevier Science, AmsterdamGoogle Scholar
  8. 8.
    Balek V, Brown ME (1998) Less common techniques. In: Brown ME (ed) Handbook on thermal analysis and calorimetry, vol 1. Elsevier Science BV, Amsterdam, pp 445–471Google Scholar
  9. 9.
    Balek V (1989) Characterization of high-tech materials by means of emanation thermal analysis. J Therm Anal 35:405–427CrossRefGoogle Scholar
  10. 10.
    Balek V, Šesták J (1988) Use of emanation thermal analysis in characterization of superconducting YBa2Cu3Ox. Thermochim Acta 133:23–26CrossRefGoogle Scholar
  11. 11.
    Balek V, Pérez-Rodriguez JL, Pérez-Maqueda LA, Šubrt J, Poyato J (2007) Thermal behaviour of ground vermiculite. J Therm Anal Calorim 88:819–823CrossRefGoogle Scholar
  12. 12.
    Balek V, Zhang Y, Zeleňák V, Šubrt J, Beckman IN (2008) Emanation thermal analysis study of brannerite ceramics for immobilization of hazardous waste. J Therm Anal Calorim 92:155–160CrossRefGoogle Scholar
  13. 13.
    Ríos S, Boffa-Ballaran T (2003) Microstructure of radiation-damage zircon under pressure. J Appl Crystallogr 36:1006–1012CrossRefGoogle Scholar
  14. 14.
    Devanathan R, Corrales LR, Weber WJ (2004) Molecular dynamics simulation of disordered zircon. Phys Rev B 69:064115(9)Google Scholar
  15. 15.
    Carrez P, Forterre Ch, Braga D, Leroux H (2003) Phase separation in metamict zircon under electron irradiation. Nucl Instrum Methods B 211:549–555CrossRefGoogle Scholar
  16. 16.
    Wang LM, Ewing RC (1992) Detailed in situ study of ion beam-induced amorphization of zircon. Nucl Instrum Methods B 65:324–329CrossRefGoogle Scholar
  17. 17.
    Balek V, Vance ER, Zeleňák V, Málek Z, Šubrt J (2007) Use of emanation thermal analysis to characterize thermal reactivity of brannerite mineral. J Therm Anal Calorim 88:93–98CrossRefGoogle Scholar
  18. 18.
    Lian J, Wang LM, Lumpkin GR, Ewing RC (2002) Heavy ion irradiation effects of brannerite-type ceramics. Nucl Instrum Methods B 191:565–570CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Lumpkin GR, Li H, Blackford MG, Colella M, Carter ML, Vance ER (2006) Recrystallisation of amorphous natural brannerite through annealing: The effect of radiation damage on the chemical durability of brannerite. J Nucl Mater 350:293–300CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Vladimír Balek
    • 1
    Email author
  • Iraida M. Bountseva
    • 2
  • Igor von Beckman
    • 2
  1. 1.Nuclear Research Institute Řež, plcŘežCzech Republic
  2. 2.Faculty of ChemistryMoscow MV Lomonosov State UniversityMoscowRussia

Personalised recommendations