Transport Constitutive Relations, Quantum Diffusion and Periodic Reactions

  • Jiří J. MarešEmail author
  • Jaroslav Šesták
  • Pavel Hubík
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)


In this contribution we are discussing a class of linear phenomenological transport equations and in some cases also their relation to microphysical description of corresponding effects. Interestingly enough, in spite of practically identical forms of these constitutive relations there are large differences in their physical content; just such a large diversity of natural processes behind the same mathematical form should serve as a serious warning before making superficial analogies. On the other hand, besides quite obvious analogies there may be found also those much deeper and sometimes quite astonishing. Lesser known or even new aspects of this kind the reader can find especially in paragraphs dealing with Ohm’s law and with statistical interpretation of generalized Fick’s law. The congruence of the last one with the fundamental equation of quantum mechanics, the Schrödinger equation, opened the possibility to interpret the rather enigmatic “quantum” behaviour of periodic chemical reactions as a special kind of diffusion.


Brownian Motion Configuration Space Brownian Particle Intermittent Measurement Markovian Stochastic Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Institutional Research Plan of Institute of Physics No AV0Z10100521.


  1. 1.
    Fourier J-BJ (1822) Théorie analytique de la chaleur. Paris (1822), English transl.: The analytical theory of heat. Dover, Mineola – New York (2003)Google Scholar
  2. 2.
    Truesdell C (1969) Rational thermodynamics. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Burr AC (1933) Notes on the history of the concept of thermal conductivity. Isis 20:246–259CrossRefGoogle Scholar
  4. 4.
    Darcy H (1856) Les fontaines publiques de la ville de Dijon. Dalmont, ParisGoogle Scholar
  5. 5.
    Forchheimer P (1914) Hydraulik. B.G. Teubner, Leipzig/BerlinGoogle Scholar
  6. 6.
    Ohm GS (1827) Die galvanische Kette, mathematisch bearbeitet. T.H. Riemann, BerlinGoogle Scholar
  7. 7.
    Von der Mühll K (1892) Ueber die theoretischen Vorstellungen von Georg Simon Ohm. Ann Phys-Leipzig 283:163–168CrossRefGoogle Scholar
  8. 8.
    Kirchhoff RG (1849) Ueber eine Ableitung der Ohm’schen Gesetze, welche sich an die Theorie der Elektrostatik anschliesst. Ann Phys-Leipzig 154:506–513CrossRefGoogle Scholar
  9. 9.
    Henisch HK (1984) Semiconductor contacts. Clarendon, OxfordGoogle Scholar
  10. 10.
    Rosser WGV (1997) Interpretation of classical electromagnetism. Kluwer Academic, DordrechtGoogle Scholar
  11. 11.
    Mareš JJ, Krištofik J, Hubík P (2002) Ohm-Kirchhoff’s law and screening in two-dimensional electron liquid. Physica E 12:340–343CrossRefGoogle Scholar
  12. 12.
    Kittel C (1976) Introduction to solid state physics, 5th edn. Wiley, New YorkGoogle Scholar
  13. 13.
    Graham T (1850) On the diffusion of liquids. Philos T Roy Soc London 140:1–46CrossRefGoogle Scholar
  14. 14.
    Fick AE (1855) Ueber Diffusion. Ann d Phys (Leipzig) 170:59–86, English transl.: On liquid diffusion. London, Edinburgh and Dublin Phil Mag and J Sci 10:30–51 (1855)Google Scholar
  15. 15.
    Sutherland W (1905) A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Phil Mag 9:781–785Google Scholar
  16. 16.
    Einstein A (1956) In: Fürth R (ed) Investigations on the theory of the Brownian movement. Dover, New YorkGoogle Scholar
  17. 17.
    von Smoluchowski M (1923) In: Fürth R (ed) Abhandlungen über die Brownsche Bewegung und verwandte Erscheinungen. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  18. 18.
    Fürth R (1920) Schwankungserscheinungen in der Physik. Vieweg und Sohn, BraunschweigGoogle Scholar
  19. 19.
    Frank P (1918) Über die Fortpflanzungsgeschwindigkeit der Diffusion. Phys Z 19:516–520Google Scholar
  20. 20.
    Stephan J (1863) Über die Fortpflanzung der Wärme. Sitz Akad Wiss Wien 47:326–344Google Scholar
  21. 21.
    Fürth R (1933) Über einige Beziehungen zwischen klassicher Statistik und Quantenmechanik. Z f Physik 81:143–162CrossRefGoogle Scholar
  22. 22.
    Fényes I (1952) Eine wahrscheilichkeitstheoretische Begründung und Interpretation der Quantenmechanik. Z f Physik 132:81–106CrossRefGoogle Scholar
  23. 23.
    Comisar GG (1965) Brownian-motion model of nonrelativistic quantum mechanics. Phys Rev 138:B1332–B1337CrossRefGoogle Scholar
  24. 24.
    Nelson E (1966) Derivation of Schrödinger equation from Newtonian mechanics. Phys Rev 150:1079–1085CrossRefGoogle Scholar
  25. 25.
    Gillspie DT (1994) Why quantum mechanics cannot be formulated as a Markov process. Phys Rev A 49:1607–1612CrossRefGoogle Scholar
  26. 26.
    Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36:823–841CrossRefGoogle Scholar
  27. 27.
    Wang MC, Uhlenbeck GE (1945) On the theory of the Brownian motion II. Rev Mod Phys 17:323–341CrossRefGoogle Scholar
  28. 28.
    von Neumann J (1932) Mathematische Grundlagen der Quantenmechanik. Springer, Berlin, English transl.: Mathematical foundations of quantum mechanics. Princeton University Press, New Jersey (1955)Google Scholar
  29. 29.
    Runge FF, Liesegang RE, Belousov BP, Zhabotinsky AM (1987) Selbsorganisation chemischer Strukturen. In: Kuhnert L, Niedersen U (eds) Ostwald’s Klassiker, vol 272. Verlag H. Deutsch, Frankfurt am MainGoogle Scholar
  30. 30.
    Runge FF (1855) Der Bildungstrieb der Stoffe veranschaulicht in selbständig gewachsenen Bildern. Selbstverlag, OranienburgGoogle Scholar
  31. 31.
    Michaleff P, Nikiforoff W, Schemjakin FM (1934) Über eine neue Gesetzmässigkeit für periodische Reaktionen in Gelen. Kolloid Z 66:197–200CrossRefGoogle Scholar
  32. 32.
    Christiansen JA, Wulff I (1934) Untersuchungen über das Liesegang-Phänomenon. Z Phys Chem B 26:187–194Google Scholar
  33. 33.
    Lévy-Leblond J-M, Balibar F (1990) Quantics, rudiments of quantum physics. North-Holland, AmsterdamGoogle Scholar
  34. 34.
    de la Peña L, Cetto AM (1996) The quantum dice – an introduction to stochastic electrodynamics. Academic, DordrechtGoogle Scholar
  35. 35.
    Mareš JJ, Stávek J, Šesták J (2004) Quantum aspects of self-organized periodic chemical reactions. J Chem Phys 121:1499–1503CrossRefGoogle Scholar
  36. 36.
    Mareš JJ, Šesták J, Stávek J, Ševčíková H, Krištofik J, Hubík P (2005) Do periodic chemical reactions reveal Fürth’s quantum diffusion limit? Physica E 29:145–149CrossRefGoogle Scholar
  37. 37.
    Mandelbrot BB (1977) The fractal geometry of nature. W.H. Freeman, New YorkGoogle Scholar
  38. 38.
    Abbott LF, Wise MB (1981) Dimension of a quantum-mechanical path. Am J Phys 49:37–39CrossRefGoogle Scholar
  39. 39.
    Hausdorff F (1919) Dimension und äusseres Mass. Math Ann 79:157–179CrossRefGoogle Scholar
  40. 40.
    Douglas B, McDaniel DH, Alexander JJ (1976) Concepts and models of inorganic chemistry, 2nd edn. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jiří J. Mareš
    • 1
    Email author
  • Jaroslav Šesták
    • 2
  • Pavel Hubík
    • 1
  1. 1.Institute of Physics ASCR, v.v.i.Praha 6Czech Republic
  2. 2.New Technologies Research CentreUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations