Oxide Glass Structure, Non-bridging Oxygen and Feasible Magnetic Properties due to the Addition of Fe/Mn Oxides

  • Jaroslav ŠestákEmail author
  • Marek Liška
  • Pavel Hubík
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)


To a large extent, the physical and thermodynamic properties of glasses are controlled by their inner structural make up within the so called short range order (SRO) and its extended viewing as modulated structures identified as medium range order (MRO) [1–5] often adjacent to nano-crystalline arrangements. Study of physical nature of nano-scale in-homogeneities in glasses (and in their melts) [6, 8] provides glass inventors with basis for elaboration of glasses of a required state, from extremely homogeneous glasses (optical fibre drawing) to nano-crystallized and/or porous-containing glasses suitable for various application (sorbents, molecular filters, bioglasses, zero-expansion glass-ceramics, matrixes for nano-scale crystals, etc.). Thus structural information is essential for material scientists to predict their thermal, magnetic and other properties.


Glass Network Borate Glass Curie Constant Average Magnetic Moment Alkali Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mysen BO (1988) Structure and properties of silicate melts. Elsevier, Amsterdam; Mysen BO, Richet P (2005) Silicate glasses and melts – properties and structure. Developments in geochemistry, vol 10. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Greaves GN, Sen S (2007) Inorganic glasses, glass-forming liquids and amorphizing solids. Adv Phys 56:1–166CrossRefGoogle Scholar
  3. 3.
    Conradt R (2004) Chemical structure, medium range order, and crystalline reference state of multicomponent oxide liquids and glasses. J Non-Cryst Solids 345/346:16–23CrossRefGoogle Scholar
  4. 4.
    Macháček J, Gedeon O, Liška M (2006) Group connectivity in binary silicate glasses. J Non-Cryst Sol 352:2173–2179; Macháček J, Gedeon O (2003) Q-species in alkali-disilicate glasses. Silikaty-Ceramics (Prague) 47:45–49Google Scholar
  5. 5.
    Liška M, Macháček J, Gedeon O, Klement R (2004) Molecular dynamics of the Na2O–MgO–CaO–SiO2 glasses. Glastech Ber Glass Sci Technol 77C:267–272; Liška M, Klement R, Macháček J, Gedeon O (2005) Inverse thermodynamic modelling of glass from Raman spectroscopical and molecular dynamics results. Phys Chem Glasses 46:108–111Google Scholar
  6. 6.
    Bogdanov VN, Ananev AV, Golubkov VV, Champagnon B (2007) Micro- and nano-inhomogenities in glasses and their melts studied by optical, SAXS, acoustical and thermodynamic methods. J Phys Conf Ser 93:2033CrossRefGoogle Scholar
  7. 7.
    Schneider J, Mastelaro VR, Zanotto ED, Shakhmatkin AB, Vedishcheva NM, Wright AC (2003) Qn distribution in stoichiometric silicate glasses: thermodynamic calculations, and NMR measurements. J Non-Cryst Solids 325:64–178; Cannas M, Vaccaro L, Boizot B (2006) Spectroscopic parameters related to non-bridging oxygen centers in amorphous-SiO2. J Non-Cryst Solids 352:203–208; Leonova E (2008) Nitrogen-rich La-Si-Al-O-N oxynitride glass structure probed by solid state NMR. J Non-Cryst Solids 354:49–53Google Scholar
  8. 8.
    Peidongz H, Kroger S, Stebbins JF (2000) Non-bridging oxygen sites in barium borosilicate glasses. J Non-Cryst Solids 276:122–131; Allwardt JR, Stebbins JF (2004) Ca–Mg and K–Mg mixing around non-bridging O-atoms in silicate glasses. Am Mineral 89:777–784Google Scholar
  9. 9.
    Malfait WJ, Zajaznova-Herzog VP, Halter WE (2007) Quantitative Raman spectroscopy: principles and application to silicate glasses. J Non-Cryst Solids 353:4015–4028CrossRefGoogle Scholar
  10. 10.
    Niggli P (1949) Die vollständige und eindeutige Kennzeichnung der Raumsysteme durch Charakterentafeln. I. Acta Cryst 2:263–270; II. Acta Cryst 3:429–433 (1950)Google Scholar
  11. 11.
    Niggli P (1945) Stereochimija. Inostr Lit, Moscow, translated from Grundlagen der Stereochemie. Birkhäuser, BaselGoogle Scholar
  12. 12.
    Villars P, Girgis K, Niggli A (1983) Coordination polyhedra and structures of alloys: binary alloys of niobium (and tantalum) with Group IIIb and IVb elements. Acta Cryst B 39:603–606CrossRefGoogle Scholar
  13. 13.
    Zachariesen WH (1932) The atomic arrangement in glass. J Am Ceram Soc 54:3841–3851CrossRefGoogle Scholar
  14. 14.
    Doweidar H (2007) Volume of ionic sites in silicate glasses. J Phys Condens Matter 19:1561CrossRefGoogle Scholar
  15. 15.
    Mysen BO, Shang J (2005) Evidence from melt partitioning that non-bridging oxygen in silicates are not equivalent. Geochim Cosmochim Acta 69:2861CrossRefGoogle Scholar
  16. 16.
    Toop GW, Samis CS (1962) Some new ionic concepts of silicate slags. Can Metal Quart 1:129–152; Activities of ions in silica melts. Trans Metal Soc AIME 224:878–887); Masson CR (1977) Anionic constitution of glass-forming melts. J Non-Cryst Solids 25:1–41Google Scholar
  17. 17.
    Koga N, Strnad Z, Šesták J, Strnad J (2003) Thermodynamics of non-bridging oxygen in silica bio-compatible glass-ceramics for bone tissue substitution. J Therm Anal Calorim 71:927CrossRefGoogle Scholar
  18. 18.
    Steevels IM (1960) Neue Erkenntnisse über die Struktur des Glases. Philips Tech Rundschau 9/10:337–349Google Scholar
  19. 19.
    Závěta K, Šesták J (1977) Structure and magnetic properties of Fe-rich oxide glasses. In: Proceedings of the International Conference on Glass’77, vol 1, p 399. ČVTS Publication House, PragueGoogle Scholar
  20. 20.
    Serra J, González P, Liste S, Chiussi S (2002) Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci- Mater Med 13:1221–1225; Liang W, Rüssel C, Day DE, Völksch G (2006) Bioactive comparison of a borate, phosphate and silicate glass. J Mater Res 21:125–131Google Scholar
  21. 21.
    Krogh-Moe J (1959) The cation distribution in some crystalline and vitreous cesium borates. Ark Kemi 14:451–459; Crystal structure of lithium diborate, Li2O.2B2O3. Acta Cryst 15:190–193 (1962)Google Scholar
  22. 22.
    Chen D, Miyoshi H, Masui H, Akai T, Yazawa T (2004) NMR study of structural changes of alkali borosilicate glasses with heat treatment. J Non-Cryst Solids 345/346:104–107CrossRefGoogle Scholar
  23. 23.
    Murdoch JB, Stebins JF, Carmicheal ISE (1985) High-resolution 29Si NMR study of silicate and aluminosilicate glasses: the effect of network-modifying cations. Am Mineral 70:332–343Google Scholar
  24. 24.
    Rüssel C (2004) Redox state of glasses. Glastech Ber-Glass 77C:149–159Google Scholar
  25. 25.
    Philips B, Muan A (1959) Phase equilibria in the system CaO-iron oxide-SiO2, in air. J Am Ceram Soc 42:413–423CrossRefGoogle Scholar
  26. 26.
    Holmquist S (1966) Ionic formulation of redox equilibria in glass melts. J Am Ceram Soc 49:228–229CrossRefGoogle Scholar
  27. 27.
    Mysen BO, Seifert F, Virgo D (1980) Structure and redox equilibria of iron bearing silicate melts. Am Mineral 65:867–884Google Scholar
  28. 28.
    Virgo D, Mysen BO, Seifert FA (1981) Relationship between the oxidation state of iron and structure of silicate melts. Carnegie I Wash 80:308–311Google Scholar
  29. 29.
    Goldman DS (1983) Oxidation equilibrium of iron in borosilicate glass. J Am Ceram Soc 66:205–209CrossRefGoogle Scholar
  30. 30.
    Pal M, Chakravorty D (1998) Structural study of iron borate glasses containing NiO and ZnO. J Mater Res 13:3286–3292CrossRefGoogle Scholar
  31. 31.
    Horie O, Syono Y, Nakagawa Y, Ito A, Okamura K, Yajima S (1978) Mossbauer study of amorphous Bao-Fe2O3-B2O3 system. Solid State Commun 25:423–426CrossRefGoogle Scholar
  32. 32.
    Akamatsu H, Tanaka K, Fujita K, Murai S (2008) Magnetic phase transitions in Fe2O3–Bi2O3–B2O3 glasses. J Phys Condens Matter 20:235216(9)Google Scholar
  33. 33.
    Šesták J (1978) Magnetic properties and glass-formation of doped oxide glasses prepared by various methods of rapid quenching: Part I. Sklář a Keramik 28:321; Part II. Sklář a Keramik 28:353 (1978) (both in Czech)Google Scholar
  34. 34.
    Šesták J (1983) Crystallization behavior of rapidly quenched iron oxide containing glasses with regard to thermal and magnetic properties. Wiss Ztschr Friedrich-Schiller-Univ Jena Math-Naturwiss Reihe 32:377Google Scholar
  35. 35.
    Šesták J (1973) On ferrimagnetic glass-ceramics based on B2O3 and MnFe2O4. J Therm Anal 5:669–672CrossRefGoogle Scholar
  36. 36.
    Závěta K, Šesták J, Roskovec V (1972) Magnetic properties of Mn-Fe-ferrite containing borate glasses. J Am Cer Soc 55:537 and the key lecture at The 3rd Czechoslovak Conf. on Magnetism, Kosice 1971, proceedings in Czech J Phys B 23:837–839 (1973)Google Scholar
  37. 37.
    Šimšová J, Šimša Z, Šesták J (1979) Electrical and structural properties of y(MnxFe3-xO4)-(1-y)B2O3 glasses between 400 and 1000 K. J Non-Cryst Solids 30:375–378CrossRefGoogle Scholar
  38. 38.
    Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib Miner Petrol 83:136–140CrossRefGoogle Scholar
  39. 39.
    Šesták J, Šestáková V, Tříska A, Závěta K (1988) Glass-formation, phase relation and magnetic properties of the splat-quenched system of laser melted (Fe, Mn)2O3-(B, Bi)2O3. J Therm Anal 33:789–795CrossRefGoogle Scholar
  40. 40.
    Nakamura H, Kishi T, Ohgaki T, Muro Y, Yasumori A (2008) Magnetic properties of phase separated glass and glass ceramics in Co3O4–TiO2–SiO2 system. J Phys Conf Ser 106:012009(4)Google Scholar
  41. 41.
    Hamad S, Bromley ST (2008) Low reactivity of non-bridging oxygen on stoichiometric silica surfaces. Chem Commun 10:4156–4158CrossRefGoogle Scholar
  42. 42.
    Moorjani K, Coey JMD (1984) Magnetic glasses. Elsevier, AmsterdamGoogle Scholar
  43. 43.
    Lupu N, Chiriac H (2002) Determination of disordered magnetic structures in high-coercivity Nd-Fe-based glassy alloys. Microscopy and Microanal 8:370–371; Bulk amorphous magnetic materials. J Optoelectr Adv Mater 4:207–216 (2002); In: Liu Y, Sellmyer DJ, Shindo D (eds) Handbook of advanced magnetic materials, vol 3: fabrication and processing. Springer, Berlin, pp 1279–1328 (2008)Google Scholar
  44. 44.
    Šesták J (2004) Heat, thermal analysis and society, Chap 19: Modern materials and society. Nucleus, Hradec Kralove, pp. 306–314Google Scholar
  45. 45.
    Zaitsev DD, Kazin PE, Trusov LA, Vishnyakov DA, Tretyakov YuD, Jansen M (2006) Synthesis of magnetic glass-ceramics in the system SrO–Fe2O3–Al2O3–B2O3. J Magn Magn Mater 300:473–475CrossRefGoogle Scholar
  46. 46.
    del Real RP, Arcos D, Vallet-Regí M (2002) Implantable magnetic glass − ceramics based on (Fe, Ca)SiO3 solid solutions. Chem Mater 14:64–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.New Technologies Research CentreUniversity of West BohemiaPlzeňCzech Republic
  2. 2.Vitrum LaugaricioJoint Glass Center of Institute of Inorganic Chemistry (Slovak Academy of Sciences) and Alexander Dubček University of Trenčín and RONA, j.s.c. glassfactoryTrenčínSlovak Republic
  3. 3.Institute of Physics, v.v.i., the Academy of Sciences of ČRPraha 6Czech Republic

Personalised recommendations