Thermal Properties and Related Structural Study of Oxide Glasses

  • Marek LiškaEmail author
  • Mária Chromčíková
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)


Glass is accompanying people from the early times of mankind. First it was the natural glass generated by the volcanic processes and the glass “produced” by the impact of meteors on the earth. During formation of the earth, highly siliceous melts of rocks froze to natural glasses such as obsidians. After some time the people start the glass melting. Glass was first produced by man about 4,000 years ago in ancient Egypt. From this time the need of the knowledge of glass composition, structure and properties is dated. These are the typical questions answered by the glass chemistry [1–6].


Raman Spectrum Thermodynamic Model Glass Composition Molar Amount Glass Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Scholze H (1991) Glass – nature, structure, and properties. Springer, BerlinGoogle Scholar
  2. 2.
    Vogel W (1992) Glass chemistry, 2nd edn. Springer, BerlinGoogle Scholar
  3. 3.
    Rao KJ (2002) Structural chemistry of glasses. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Mysen BO (1988) Structure and properties of silicate melts. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Mysen BO, Richet P (2005) Silicate glasses and melts – properties and structure. Developments in geochemistry, vol 10. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Greaves GN, Sen S (2007) Inorganic glasses, glass-forming liquids and amorphizing solids. Adv Phys 56:1–166CrossRefGoogle Scholar
  7. 7.
    Gutzow I, Schmelzer J (1995) The vitreous state. Thermodynamics, structure, rheology, and crystallization. Springer, BerlinGoogle Scholar
  8. 8.
    Conradt R (1999) Thermochemistry and structure of oxide glasses. In: Bach H, Krause D (eds) Analysis of the composition and structure of glass and glass ceramics. Springer, Berlin, pp 232–254Google Scholar
  9. 9.
    ASTM – C162 (1983) Standard terminology of glass and glass products. American Society for Testing and Materials, West Conshohocken, PAGoogle Scholar
  10. 10.
    Liška M, Štubňa I, Antalík J, Perichta P (1996) Structural relaxation with viscous flow followed by thermodilatometry. Ceramics 40:15–19Google Scholar
  11. 11.
    Conradt R (2004) Chemical structure, medium range order, and crystalline reference state of multicomponent oxide liquids and glasses. J Non-Cryst Solids 345, 346:16–23CrossRefGoogle Scholar
  12. 12.
    Bale CW et al (2002) FactSage thermochemical software and databases. Calphad 26:189–228CrossRefGoogle Scholar
  13. 13.
    Zachariasen WH (1933) Die Struktur der Gläser. Glastechn Ber 11:120–123Google Scholar
  14. 14.
    Warren BE (1941) Summary of work on atomic arrangement in glass. J Am Ceram Soc 24:256–261CrossRefGoogle Scholar
  15. 15.
    Sprenger D (1996) Spektroskopische Untersuchungen und Berechnung zur Struktur anorganischer Gläser. PhD Thesis, Mainz, GermanyGoogle Scholar
  16. 16.
    Sprenger D, Bach H, Meisel W, Gütlich P (1993) Discrete Bond Model (DBM) of sodium-silicate glasses derived from XPS. Raman and NMR measurements. J Non-Cryst Solids 159:187–203CrossRefGoogle Scholar
  17. 17.
    Schultz-Münzenberg C (1999) How to describe the topological structure of glasses. In: Bach H, Krause D (eds) Analysis of the composition and structure of glass and glass ceramics. Springer, Berlin, pp 141–152Google Scholar
  18. 18.
    Koga N, Strnad Z, Šesták J, Strnad J (2003) Thermodynamics of non-bridging oxygen in silica bio-compatible glass-ceramics. J Therm Anal Calorim 71:927–937CrossRefGoogle Scholar
  19. 19.
    Šesták J, Strnad J, Strnad Z, Koga N, Holeček M (2008) Biomedical thermodynamics of bio-compatible glass-ceramics and otherwise modified inorganic material surfaces. Adv Mat Res 39, 40:329–334CrossRefGoogle Scholar
  20. 20.
    Gurman SJ (1990) Bond ordering in silicate glasses: a critique and resolution. J Non-Cryst Solids 125:151–160CrossRefGoogle Scholar
  21. 21.
    Conradt R (1999) Predictive modeling of glass corrosion. In: Proceedings of the 5th ESG Conference, B1-2–B1-10, Czech Glass Society, Prague, Czech RepublicGoogle Scholar
  22. 22.
    Conradt R (2001) A proposition for an improved theoretical treatment of the corrosion of multi-component glass. J Nucl Mater 298:19–26CrossRefGoogle Scholar
  23. 23.
    Shakhmatkin BA, Vedishcheva NM, Shultz MM, Wright AC (1994) The thermodynamic properties of oxide glasses and glass-forming liquids and their chemical structure. J Non-Cryst Solids 177:249–256CrossRefGoogle Scholar
  24. 24.
    Vedishcheva NM, Shakhmatkin BA, Shultz MM, Wright AC (1996) The thermodynamic modelling of glass properties: a practical proposition. J Non-Cryst Solids 196:239–243CrossRefGoogle Scholar
  25. 25.
    Shakhmatkin BA, Vedishcheva NM, Wright AC (1997) In: Wright AC, Feller SA, Hannon AC (eds) Borate glasses crystals and melts. Society of Glass Technology, Sheffield, p 189Google Scholar
  26. 26.
    Shakhmatkin BA, Vedishcheva NM, Wright AC (2001) Can thermodynamics relate the properties of melts and glasses to their structure? J Non-Cryst Solids 293–295:220–236CrossRefGoogle Scholar
  27. 27.
    Vedishcheva NM, Shakhmatkin BA, Wright AC (2001) Thermodynamic modelling of the structure of glasses and melts: single-component, binary and ternary systems. J Non-Cryst Solids 293–295:312–317CrossRefGoogle Scholar
  28. 28.
    Vedishcheva NM, Shakhmatkin BA, Wright AC (2003) Thermodynamic modelling of the structure of sodium borosilicate glasses. Phys Chem Glasses 44:191–196Google Scholar
  29. 29.
    Vedishcheva NM, Shakhmatkin BA, Wright AC (2004) The structure of sodium borosilicate glasses: thermodynamic modelling vs. experiment. J Non-Cryst Solids 345, 346:39–44CrossRefGoogle Scholar
  30. 30.
    Shakhmatkin BA, Vedishcheva NM, Wright AC (2004) Thermodynamic modelling of the structure of oxyhalide glasses. J Non-Cryst Solids 345, 346:461–468CrossRefGoogle Scholar
  31. 31.
    Vonka P, Leitner J (1995) Calculation of chemical equilibria in heterogeneous multicomponent systems. Calphad 19:25–36CrossRefGoogle Scholar
  32. 32.
    Liška M, Macháček J, Perichta P, Gedeon O, Pilát J (2008) Thermochemical modelling and Ab initio molecular dynamics simulations of calcium aluminate glasses. Ceram Silik 52:61–65Google Scholar
  33. 33.
    Seward TP III, Vascott T (eds) (2005) High temperature glass melt property database for process modeling. American Ceramic Society, Westerville, OHGoogle Scholar
  34. 34.
    Pye LD, Montenero A, Josephs I (eds) (2005) Properties of glass-forming melts. Taylor & Francis, Boca Raton, FLGoogle Scholar
  35. 35.
    http://www.sciglass.infoGoogle Scholar
  36. 36.
    Pelton AD, Wu P (1999) Thermodynamic modeling in glass-forming melts. J Non-Cryst Solids 253:178–197CrossRefGoogle Scholar
  37. 37.
    Stolyarova VL (2008) Thermodynamic properties and structure of ternary silicate glass-forming melts: experimental studies and modeling. J Non-Cryst Solids 354:1373–1377CrossRefGoogle Scholar
  38. 38.
    McMillan PF (1984) Structural studies of silicate glasses and melts – applications and limitations of Raman spectroscopy. Am Mineral 69:622–644Google Scholar
  39. 39.
    McMillan PF, Wolf GH (1995) Vibrational spectroscopy of silicate liquids. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Structure, dynamics and properties of silicate melts. Mineralogical Society of America, Washington, DC, pp 247–315Google Scholar
  40. 40.
    Parkinson BG, Holland D, Smith ME, Larson C, Doerr J, Affatigato M, Feller SA, Howes AP, Scales CR (2008) Quantitative measurement of Q3 species in silicate and borosilicate glasses using Raman Spectroscopy. J Non-Cryst Solids 354:1936–1942CrossRefGoogle Scholar
  41. 41.
    Zakaznova-Herzog VP, Malfait WJ, Herzog F, Halter WE (2007) Quantitative Raman spectroscopy: principles and application to potassium silicate glasses. J Non-Cryst Solids 353:4015–4028CrossRefGoogle Scholar
  42. 42.
    Malfait WJ, Zakaznova-Herzog VP, Halter WE (2007) Quantitative Raman spectroscopy: high-temperature speciation of potassium silicate melts. J Non-Cryst Solids 353:4029–4042CrossRefGoogle Scholar
  43. 43.
    Malfait WJ (2009) Quantitative Raman spectroscopy: speciation of cesium silicate glasses. J Raman Spectrosc 40:1895–1901CrossRefGoogle Scholar
  44. 44.
    Pelikán P, Čeppan M, Liška M (1994) Computational methods in molecular spectroscopy. CRC Press, Boca Raton, FLGoogle Scholar
  45. 45.
    Malinowski ER (2002) Factor analysis in chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  46. 46.
    Kramer R (1998) Chemometric techniques for quantitative analysis. Marcel Dekker, New YorkCrossRefGoogle Scholar
  47. 47.
    Factor analysis Toolbox for MATLAB®. Applied Chemimetrics, http://www.chemometrics.comGoogle Scholar
  48. 48.
    Liška M, Holubová J, Chromčíková M, Černošková E (2008) Raman spectra, structure and thermodynamic model of As2S3–As2Se3 glasses. In: 30th International Czech and Slovak Seminar on Calorimetry, University of Pardubice, Pardubice, Czech Republic, pp 3–36Google Scholar
  49. 49.
    Holubová J, Černošek Z, Černošková E, Liška M (2006) Glassy system As-S-Se. In: 28th International Czech and Slovak Seminar on Calorimetry, University of Pardubice, Pardubice, Czech Republic, pp 133–136Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Vitrum LaugaricioJoint Glass Center of Institute of Inorganic Chemistry (Slovak Academy of Sciences) and Alexander Dubček University of Trenčín and RONA, j.s.c. glassfactoryTrenčínSlovak Republic

Personalised recommendations