Viscosity Measurements Applied to Chalcogenide Glass-Forming Systems

  • Petr KoštálEmail author
  • Jana Shánělová
  • Jiří Málek
Part of the Hot Topics in Thermal Analysis and Calorimetry book series (HTTC, volume 8)


Viscosity is an important physical parameter which determines the flow of material. The knowledge of viscous behaviour is important for example for the process of the material production. In the case of glasses and their undercooled melts, viscosity influences also the processes of structural relaxation and crystallization. Structural relaxation is in fact a very slow structural rearrangement of glass. This process can be realized through viscous flow and therefore is influenced by it. Crystallization process which may occur in undercooled melts is also influenced by the diffusion coefficient in the glassy matrix and therefore by its viscosity. This chapter tries to summarize the available viscosity data for chalcogenides and the basic measuring methods which are mostly often used to determine them.


Structural Relaxation Important Physical Parameter Deflection Rate Measured Liquid Cylindrical Indenter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Ministry of Education Youth and Sports of the Czech Republic under project: LC 523 and the Czech Science Foundation under grant No: 104/08/1021.


  1. 1.
    Plazek DJ (1968) Magnetic bearing torsional creep apparatus. J Polym Sci A2 6:621–638Google Scholar
  2. 2.
    Meyer OE (1891) Ein verfahren zur bestimmung der inneren reibung von flüssigkeiten. Ann Phys Chem 5:1–14Google Scholar
  3. 3.
    Holland FA, Bragg R (1995) Fluid flow for chemical engineers. Elsevier, OxfordGoogle Scholar
  4. 4.
    Brooks R, Dinsdale A, Quested P (2005) The measurement of viscosity of alloys – a review of methods: data and models. Meas Sci Technol 16:354–362CrossRefGoogle Scholar
  5. 5.
    Scholze H, Kreidl NJ (1983) Technological aspects of viscosity. In: Uhlmann R, Kreidel NJ (eds) Glass: science and technology. Academic, New York, pp 233–273Google Scholar
  6. 6.
    Littleton J (1927) A method for measuring the softening temperature of glasses. J Am Ceram Soc 10:259CrossRefGoogle Scholar
  7. 7.
    Kolomiets BT, Pozdnev VP (1960) Viscosity of As2Se3-As2Te3 glassy semiconductors (Russ.). Sov Phys-Sol State 2:28–34Google Scholar
  8. 8.
    Cox SM (1943) A method of viscosity measurement in the region 108 poises. J Sci Instrum 20:113–114CrossRefGoogle Scholar
  9. 9.
    Yang FQ, Li JCM (1997) Newtonian viscosity measured by impression test. J Non-Cryst Solids 212:126–135CrossRefGoogle Scholar
  10. 10.
    Nemilov SV, Petrovskii GT (1963) New method for measuring of viscosity of glasses (Russ.). J Appl Chem-USSR 36:222–225Google Scholar
  11. 11.
    Exnar P, Hruba M, Uhlir J, Voldan J (1980) Experience with the penetration viscosimeter. Silikaty 24:169–179Google Scholar
  12. 12.
    Gent AN (1960) Theory of the parallel plate viscometer. Br J Appl Phys 11:85–87CrossRefGoogle Scholar
  13. 13.
    Hagy HE (1963) Experimental evaluation of beam-bending method of determining glass viscosities in the range 108 to 1015 poises. J Am Ceram Soc 46:93–97CrossRefGoogle Scholar
  14. 14.
    Eisenberg A, Tobolsky AV (1962) Viscoelastic properties of amophous selenium. J Polym Sci 61:483–495CrossRefGoogle Scholar
  15. 15.
    Pohl KD, Bruckner R (1981) Structural viscosity of sulfur and arsenic sulfide melts – density and refractive-index. Phys Chem Glasses 22:150–157Google Scholar
  16. 16.
    Prod´homme M (1956) Viscosité des verres dans le domaine de transformation. Verres Refract 4:208–214Google Scholar
  17. 17.
    Malek J (1998) Dilatometric study of structural relaxation in arsenic sulfide glass. Thermochim Acta 311:183–198CrossRefGoogle Scholar
  18. 18.
    Suzuki S, Kamiya Y, Suzuki Y, Kobayashi T (1972) Viscosity of glass in the transition region in the systems arsenic-sulfur, arsenic-sulfur-iodine, and arsenic-sulfur-thallium (Jpn.). J Soc Mater Sci Jpn 21:143–147CrossRefGoogle Scholar
  19. 19.
    Nemilov SV (1979) Valence structure, viscous and elastic properties of as-S melts (Russ.). Fiz Chim Stekla 5:398–409Google Scholar
  20. 20.
    Nemilov SV (1964) Relation between free energy of activation for viscous flow and energy of chemical bonds in glasses (Russ.). Solid State Phys 6:1375–1379Google Scholar
  21. 21.
    Kubacki W (1973) Effect of heat treatment on chlacogenide glass – part 1. Verres Refract 27:105–116Google Scholar
  22. 22.
    Vinogradova GZ, Dembovskii SA, Kuzmina TN, Chernov AP (1967) Viscosity and structure of As-S glasses (Russ.). Zh Neorg Chim 12:3240–3247Google Scholar
  23. 23.
    Zhukina NE, Orlova GM, Chalabjan GA (1979) Viscous and elastic properties of As-S-Tl glasses (Russ.). Fiz Chim Stekla 5:223–228Google Scholar
  24. 24.
    Chernov AP, Dembovskii SA, Machova VI (1970) Viscosity and structure of As2X3-AsI3 glasses (Russ.). Izv Akad Nauk SSSR Neorg Mater 6:823–825Google Scholar
  25. 25.
    Kunugi M, Ota R, Suzuki M (1970) Viscosity of glasses in the system As-Se, As-Se-S, As-Se-Te and As-Se-Tl (Jpn.). J Soc Mater Sci Jpn 19:145–150CrossRefGoogle Scholar
  26. 26.
    Vinogradova GZ, Dembovskii SA, Anisimova TN (1970) Study of viscosity of As2S3-Tl2S and As2Se3-Tl2Se glasses (Russ.). Zh Neorg Chim 15:1949–1952Google Scholar
  27. 27.
    Dembovskii SA (1968) Identification and properties of chemical compounds TlAsS2, TlAsSe2 and TlAsTe2 in glassy and crystalline form (Russ.). Izv Akad Nauk SSSR Neorg Mater 4:1920–1926Google Scholar
  28. 28.
    Brady DJ, Wang J, Hewak DW (1998) Viscosity of chalcogenide glass. In: Hewak D (ed) Properties, processing and applications of glass and rare earth-doped glasses for optical fibres. INSPEC, London, pp 309–312Google Scholar
  29. 29.
    Malek J, Shanelova J (1999) Viscosity of germanium sulfide melts. J Non-Cryst Solids 243:116–122CrossRefGoogle Scholar
  30. 30.
    Shanelova J, Kostal P, Malek J (2006) Viscosity of (GeS2)(x)(Sb2S3)(1-x) supercooled melts. J Non-Cryst Solids 352:3952–3955CrossRefGoogle Scholar
  31. 31.
    Seddon AB, Hemingway MA (1991) Thermal-properties of chalcogenide-halide glasses in the system – Ge-S-I. J Therm Anal 37:2189–2203CrossRefGoogle Scholar
  32. 32.
    Cukierman M, Uhlmann DR (1973) Viscous flow behavior of selenium. J Non-Cryst Solids 12:199–206CrossRefGoogle Scholar
  33. 33.
    Yang FQ, Li JCM (1997) Viscosity of selenium measured by impression test. J Non-Cryst Solids 212:136–142CrossRefGoogle Scholar
  34. 34.
    Jenckel E (1937) Die Vorgänge bei der Abkühlung von Gläsern und Kunstharzen. Z Elektrochem 43:796–806Google Scholar
  35. 35.
    Jenckel VE (1938) Über Strukturviskosität an erweichendem Selenglas. Kolloid Z 84:266–268CrossRefGoogle Scholar
  36. 36.
    Bernatz K, Echeverria I, Simon S, Plazek D (2002) Characterization of the molecular structure of amorphous selenium using recoverable creep compliance measurements. J Non-Cryst Solids 307:790–801CrossRefGoogle Scholar
  37. 37.
    Nemilov SV, Petrovskii GT (1963) Study of viscosity of glassy system Se-As (Russ.). J Appl Chem-USSR 36:977–981Google Scholar
  38. 38.
    Hamada S, Yoshida NTS (1969) On the viscosity of liquid selenium. Bull Chem Soc Jpn 42:1025–1029CrossRefGoogle Scholar
  39. 39.
    Harrison DE (1964) Effect of pressures (up to 4 kbar) on polymerization of liquid selenium from measurements of viscosity. J Chem Phys 41:844–849CrossRefGoogle Scholar
  40. 40.
    Khalilov KM, Kuliev BB (1965) Temperature dependence of viscous properties of amorphous selenium (Russ.). Fiz Tverd Tela 7:2847–2848Google Scholar
  41. 41.
    Khalilov KM (1959) Viscosity of molten selenium (Russ.). Izv Akad Nauk Azerb SSR 6:67–70Google Scholar
  42. 42.
    Ueberreiter K, Orthmann HJ (1951) Viscosity of glassy selenium from 0°C to 100°C. Kolloid Z 123:84–91CrossRefGoogle Scholar
  43. 43.
    Krebs H, Morsch W (1950) Die Molekelgröße des amorphen schwarzen Selens. Z Anorg Allg Chem 263:305–309CrossRefGoogle Scholar
  44. 44.
    Dzhalilov SU, Orudzheva SO (1966) Viscosity of amorphous selenium doped by antimony (Russ.). Zh Fiz Chim 60:2130–2132Google Scholar
  45. 45.
    Keezer RC, Bailey MW (1967) The structure of liquid selenium from viscosity measurements. Mater Res Bull 2:185–192CrossRefGoogle Scholar
  46. 46.
    Shirai T, Hamada S, Kobayaski K (1963) Viscous flow of selenium liquid. J Chem Soc Jpn 84:968–972Google Scholar
  47. 47.
    Dobinski S, Wesolowski J (1937) On the viscosity of liquid selenium. Bull Int Acad Polon Sci Lett Part A 7:7–14Google Scholar
  48. 48.
    Senapati U, Varshneya AK (1996) Viscosity of chalcogenide glass-forming liquids: An anomaly in the ‘strong’ and ‘fragile’ classification. J Non-Cryst Solids 197:210–218CrossRefGoogle Scholar
  49. 49.
    Anthonis HE, Kreidel NJ, Ratzenboeck WH (1973/1974) Polynary silicon arsenic chalcogenide glasses with high softening temperatures. J Non-Cryst Solids 13:13–36CrossRefGoogle Scholar
  50. 50.
    Webber PJ, Savage JA (1981) Measurement of the viscosity of chalcogenide glasses by a parallel plate technique. J Mater Sci 16:763–766CrossRefGoogle Scholar
  51. 51.
    Henderson DW, Ast DG (1984) Viscosity and crystallization kinetics of As2Se3. J Non-Cryst Solids 64:43–70CrossRefGoogle Scholar
  52. 52.
    Kostál P, Shanelova J, Malek J (2005) Viscosity of Cu-x(AS(2)Se(3))100-(x) supercooled melts. J Non-Cryst Solids 351:3152–3155CrossRefGoogle Scholar
  53. 53.
    Orlova GM, Udalov SS, Manachova EN (1985) Elastic and thermal properties of AsSe-TlSe and As2Se3-Tl2Se glasses (Russ.). Fiz Chim Stekla 11:215–218Google Scholar
  54. 54.
    Webber PJ, Savage JA (1976) Some physical properties of Ge-As-Se infrared optical glasses. J Non-Cryst Solids 20:271–283CrossRefGoogle Scholar
  55. 55.
    Le Bourhis E, Gadaud P, Guin JP, Tournerie N, Zhang XH, Lucas J, Rouxel T (2001) Temperature dependence of the mechanical behaviour of a GeAsSe glass. Scr Mater 45:317–323CrossRefGoogle Scholar
  56. 56.
    Nemilov SV (1964) Viscosity and structure of As-Ge-Se glasses in the region of low selenium content (Russ.). J Appl Chem-USSR 37:1699–1708Google Scholar
  57. 57.
    Nemilov SV (1964) Viscosity and structure of As-Ge-Se glasses in the region of high selenium content (Russ.). J Appl Chem-USSR 37:1452–1457Google Scholar
  58. 58.
    Nguyen VQ, Sanghera JS, Aggarwal ID, Lloyd IK (2000) Physical properties of chalcogenide and chalcohalide glasses. J Am Ceram Soc 83:855–859CrossRefGoogle Scholar
  59. 59.
    Morgan SP, Furniss D, Seddon AB (1996) Lanthanum-fluoride addition to gallium-lanthanum-sulphide glasses. J Non-Cryst Solids 203:135–142CrossRefGoogle Scholar
  60. 60.
    Kostal P, Malek J (2007) Viscosity of (GeSe2)(x)(Sb2Se3)(1-x) undercooled melts. J Non-Cryst Solids 353:2803–2806CrossRefGoogle Scholar
  61. 61.
    Nemilov SV (1964) Viscosity and structure of Se-Ge glasses (Russ.). J Appl Chem-USSR 37:1020–1024Google Scholar
  62. 62.
    Korepanova NA, Orlova GM, Pazin AV (1976) Study of the structural-chemical features of Sb-Ge-Se glasses by a viscometric method (Russ.). J Appl Chem-USSR 49:36–40Google Scholar
  63. 63.
    Kim EI, Orlova GM (1974) Viscosity of P-Se glass system (Russ.). J Appl Chem-USSR 47:989–992Google Scholar
  64. 64.
    Orlova GM, Kolomejtseva SE, Timonov AS, Kuznetsova OA (1979) Viscosity and thermal expansion of P-Se-Te glasses (Russ.). Fiz Chim Stekla 5:546–551Google Scholar
  65. 65.
    Kolesnikov NN (1992) Viscosity of ZnSe melt (Russ.). Zh Fiz Chim 66:760–763Google Scholar
  66. 66.
    Glazov VM, Grabchak NM (1978) Change in short-range order structure when silver chalcogenide melts are heated (Russ.). Neorg Mater 14:466–468Google Scholar
  67. 67.
    Chaussemy G, Fornazero J, Mackowski JM (1983) Relationship between viscosity and structure in AsxS1-x molten materials. J Non-Cryst Solids 58:219–234CrossRefGoogle Scholar
  68. 68.
    Glazov VM, Mal’sagov AU (1977) Change in short-range order during heating of melts of certain compounds of Type AIBIIIC2VI and Type AIBVC2VI (Russ.). Neorg Mater 13:1383–1386Google Scholar
  69. 69.
    Glazov VM, Burchanov AS, Krestovnikov AN (1971) Change in Short-range order structure in melts of Cu2BVI compounds during heating (Russ.). IVZ VUZ Tsvetnaya Metallurgia 14:95–100Google Scholar
  70. 70.
    Glazov VM, Burchanov AS (1994) Viscosity of melts in pseudobinary systems of copper chalcogenides (Russ.). Neorg Mater 30:741–746Google Scholar
  71. 71.
    Glazov VM (2000) Structural Inhomogeneity of melts in quasi-binary systems formed by copper chalcogenides (Russ.). Zh Fiz Chim 74:586–594Google Scholar
  72. 72.
    Glazov VM (2000) Temperature dependence of viscosity and density of the melts of quasi-binary systems formed by copper chalcogenides (Russ.). Teplofiz Vysok Temp 38:557–565Google Scholar
  73. 73.
    Glazov VM, Situlina OV (1970) Temperature variation in short-range structure of molten germanium and tin sulphide and selenide (Russ.). Zh Fiz Chim 44:2480–2485Google Scholar
  74. 74.
    Glagoleva NN, Krestovnikov AN, Glazov VM (1968) Change in short-range order and character of chemical bonds of IV group chalcogenide melts with galenite structure upon heating (Russ.). Neorg Mater 4:1890–1897Google Scholar
  75. 75.
    Fisher VM, Krebs H (1974) Untersuchungen über die Viskosität von Chalcogenidschmelzen. Glass Sci Technol 47:42–51Google Scholar
  76. 76.
    Laugier A, Chaussemy G, Fornazero J (1977) Viscosity of glass-forming Ge-Se liquid solutions. J Non-Cryst Solids 23:419–429CrossRefGoogle Scholar
  77. 77.
    Chaussemy G, Fornazero J, Laugier A (1976) Influence of germanium on viscosity of liquid selenium. J Phys Lett Paris 37:L283–L285CrossRefGoogle Scholar
  78. 78.
    Chaussemy G, Fornazero J, Laugier A (1977) Viscosity measurements for GexSe1-x liquids in simple vitrification compositions and notion of association. Rev Phys Appl 12:687–690CrossRefGoogle Scholar
  79. 79.
    Kadoun A, Chaussemy G, Fornazero J, Mackowski JM (1983) Kinematic viscosity of AsxSe1-x glass forming liquids. J Non-Cryst Solids 57:101–108CrossRefGoogle Scholar
  80. 80.
    Tverjanovich AS, Skorobogatova I (1990) Viscosity of As2Se3-Tl2Se melts (Russ.). Fiz Chim Stekla 16:369–373Google Scholar
  81. 81.
    Glazov VM, Burchanov AS, Krestovnikov AN (1971) Physico-chemical analysis of Cu-Se and Cu-Te melts (Russ.). Neorg Mater 7:1494–1496Google Scholar
  82. 82.
    Chaussemy G, Fornazero J, Laugier A (1980) Viscosity and local order in PbxSe(1-x) melts. J Phys Paris 41:371–373CrossRefGoogle Scholar
  83. 83.
    Aleksandrov AA, Andrianova TN, Ochotin VS, Razumeichenko LA, Panina ZI (1977) Study of the density and viscosity of tin-selenium system melts (Russ.). Teplofiz Vysok Temp 15:47–52Google Scholar
  84. 84.
    Tverjanovich AS, Kasatkina EB (1992) Viscosity of As-Te melts (Russ.). Fiz Chim Stekla 18:86–93Google Scholar
  85. 85.
    Glazov VM, Krestovnikov AN, Glagoleva NN (1965) Physico-chemical analysis of binary systems formed by tellurium with germanium subgroup elements in liquid state (Russ.). Dokl Akad Nauk SSSR 162:94–97Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Petr Koštál
    • 1
    Email author
  • Jana Shánělová
    • 1
  • Jiří Málek
    • 1
  1. 1.Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations