Skip to main content

Nanoscale Investigation of Polycrystalline Ferroelectric Materials via Piezoresponse Force Microscopy

  • Chapter
Multifunctional Polycrystalline Ferroelectric Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 140))

Abstract

Ferroelectrics possess a wide spectrum of functional properties including switchable polarization, piezoelectricity, pyroelectricity, dielectric nonlinearity, and high non-linear optical activity, which make these materials promising for a large number of applications [1]. These include nonvolatile random access memories (FERAM) [2], micro-electromechanical systems (MEMS) [3], infrared detectors, optical modulators and waveguides, and many others [4, 5]. The general trends of miniaturization in modern electronics demand a decrease in the size of the active ferroelectric elements to a submicron scale. This in turn necessitates the development of microscopic techniques allowing for the evaluation of ferroelectric and piezoelectric properties with nanoscale resolution. Several fundamental issues have to be addressed such as the effect of the films thickness and lateral size of the capacitor, or of the single grain on ferroelectric and piezoelectric properties, the relationship between grain/capacitor size and peculiarities of the polarization switching, and mechanisms of degradation effects, such as retention, imprint, and polarization fatigue [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lines ME, Glass AM (1979) Principles and applications of ferroelectrics and relatedmaterials. Clarendon Press. Oxford.

    Google Scholar 

  2. Auciello O, Ramesh R (eds) (July 1996) Electroceramic thin films: Device applications.MRS Bulletin. Materials Research Society.

    Google Scholar 

  3. Muralt P (2008) Recent progress in materials issues for piezoelectric MEMS, J. Am.Ceram. Soc. 91: 1385-1396.

    Article  CAS  Google Scholar 

  4. Uchino K (2000) Ferroelectric devices. Decker. New York.

    Google Scholar 

  5. Waser R (ed.) (2005) Nanoelectronics and information technology: advanced electronic materials and novel devices. Wiley-VCH. Berlin.

    Google Scholar 

  6. Saurenbach F, Terris BD (1990) Imaging of ferroelectric domain walls by force microscopy. Appl. Phys. Lett. 56: 1703-1705.

    Article  CAS  Google Scholar 

  7. Kalinin SV, Rar A, Jesse S (2006) A decade of piezoresponse force microscopy:Progress, challenges, and opportunities. IEEE Trans. UFFC 53: 2226-2252.

    Google Scholar 

  8. Kalinin SV, Gruverman A, Scanning Probe Microscopy: Electrical andElectromechanical Phenomena at the Nanoscale, Springer, New York (2007).

    Google Scholar 

  9. Stern JE, Terris BD, Mamin HJ, Rugar D (1988) Deposition and imaging of localizedcharges on insulator surfaces using a force microscopy. Appl. Phys. Lett. 53: 2717-2719.

    Article  Google Scholar 

  10. Martin Y, Abraham DW, Wickramasinghe H (1987) High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103-1105.

    Article  Google Scholar 

  11. Hong JW, Kahng DS, Shin JC, Kim HJ, Khim ZG (1998) Detection and control offerroelectric domains by an electrostatic force microscope. J. Vac. Sci. Technol. B 16:2942-2946.

    Article  CAS  Google Scholar 

  12. Hong JW, Noh KH, Park S, Kwun SI, Khim ZG (1998) Surface charge density andevolution of domain structure in triglycine sulfate determined by electrostatic forcemicroscopy. Phys. Rev. B 58: 5078-5084

    Article  CAS  Google Scholar 

  13. Hong JW, Park S, Khim ZG (1999) Measurement of hardness, surface potential, andcharge distribution with dynamic contact mode electrostatic force microscope. Rev. Sci.Instr. 70: 1735-1739.

    Article  CAS  Google Scholar 

  14. Lehnen P, Dec J, Kleemann W (2000) Ferroelectric domain structures of PbTiO3 studiedby scanning force microscopy. J. Phys. D 33: 1932-1936.

    Article  CAS  Google Scholar 

  15. Luo EZ, Xie Z, Xu JB, Wilson IH, Zhao LH (2000) In situ observation of theferroelectric-paraelectric phase transition in a triglycine sulfate single crystal byvariable-temperature electrostatic force microscopy. Phys. Rev. B 61: 203-206.

    Article  CAS  Google Scholar 

  16. Soergel E, Pankrath P, Buse K (2003) Investigation of photorefractive SBN crystalswith atomic force microscopy. Ferroelectrics 296: 19-27.

    Article  CAS  Google Scholar 

  17. Lüthi R, Haefke H, Meyer KP, Meyer E, Howald L, Güntherodt HJ (1993) Surface anddomain structures of ferroelectric crystals studied with scanning force microscopy. J.Appl. Phys. 74: 7461-7471.

    Article  Google Scholar 

  18. Eng LM, Bammerlin M, Loppacher Ch, Guggisberg M, Bennewitz R, Lüthi R, Meyer E,Güntherodt HJ (1999) Surface morphology, chemical contrast, and ferroelectric domainsin TGS bulk single crystals differentiated with UHV non-contact force microscopy,Appl. Surf. Sci. 140: 253-258.

    Article  CAS  Google Scholar 

  19. Nonnenmacher M, O’Boyle MP, Wickramasinghe HK (1991) Kelvin probe forcemicroscopy. Appl. Phys. Lett. 58: 2921-2923.

    Article  Google Scholar 

  20. Jacobs HO, Knapp HF, Stemmer A (1999) Practical aspects of Kelvin probe forcemicroscopy, Rev. Sci. Instr. 70: 1756-1760.

    Article  CAS  Google Scholar 

  21. Kalinin SV and Bonnell DA (2001) Local potential and polarization screening onferroelectric surfaces. Phys. Rev. B 63: 125411 (1-13).

    Google Scholar 

  22. Son JY, Bang SH, Cho JH (2003) Kelvin probe force microscopy study of SrBi2Ta2O9and PbZr0.53Ti0.47O3 thin films for high-density nonvolatile storage devices. Appl. Phys.Lett. 82: 3505-3507.

    Article  CAS  Google Scholar 

  23. Lu XM, Schlaphof F, Grafstrom S, Loppacher C, Eng LM, Suchaneck G, Gerlach G(2002) Scanning force microscopy investigation of the Pb(Zr0.25Ti0.75)O3/Pt interface.Appl. Phys. Lett. 81: 3215-3217.

    Article  CAS  Google Scholar 

  24. Shishkin EI, Shur VY, Schlaphof F, Eng LM (2006) Observation and manipulation ofthe as-grown maze domain structure in lead germanate by scanning force microscopy.Appl. Phys. Lett. 88: 252902.

    Article  CAS  Google Scholar 

  25. Bluhm H, Wadas A, Wiesendanger R, Roshko A, Aust JA, Nam D (1997) Imaging ofdomain-inverted gratings in LiNbO3 by electrostatic force microscopy. Appl. Phys. Lett.71: 146-148.

    Google Scholar 

  26. Eng LM, Friedrich M, Fousek J, Guenter P (1996) Deconvolution of topographic andferroelectric contrast by noncontact and friction force microscopy. J. Vac. Sci. Technol.B 14: 1191-1196.

    Google Scholar 

  27. Bluhm H, Schwarz UD, Wiesendanger R (1998) Origin of the ferroelectric domaincontrast observed in lateral force microscopy. Phys. Rev. B 57: 161-169.

    Article  CAS  Google Scholar 

  28. Munoz-Saldana J, Schneider GA, Eng LM (2001) Stress induced movement of ferroelastic domain walls in BaTiO3 single crystals evaluated by scanning force microscopy. Surf. Sci. Lett. 480: L402-L410.

    Article  CAS  Google Scholar 

  29. Zybill CE, Boubekeur H, Li B, Koch F, Schindler G, Dehm C (2001) Domain structureof (100) strontium bismuth tantalate (SBT) SrBi2Ta2O2 films. Thin Solid Films 386: 59-

    Google Scholar 

  30. 67.

    Google Scholar 

  31. Ganpule CS, Nagarajan V, Hill BK, Roytburd AL, Williams ED, Alpay SP, Roelofs A, Waser R, Eng LM (2002) Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films. J. Appl. Phys. 91: 1477-1481.

    Article  CAS  Google Scholar 

  32. Wang YG, Kleemann W, Woike T, Pankrath R (2000) Atomic force microscopy ofdomains and volume holograms in Sr0.61Ba0.39Nb2O6:Ce3+. Phys. Rev. B 61: 3333-3336.

    CAS  Google Scholar 

  33. Jungk T, Soergel E (2005) Depth-resolved analysis of ferroelectric domain structures in bulk LiNbO3 crystals by scanning force microscopy. Appl. Phys. Lett. 86: 242901.

    Article  CAS  Google Scholar 

  34. Cho Y, Kirihara A, Saeki T (1996) Scanning nonlinear dielectric microscope. Rev. Sci.Instr. 67: 2297-2303.

    Article  CAS  Google Scholar 

  35. Odagawa H, Cho Y (2000) Theoretical and experimental study on nanoscale ferroelectric domain measurement using scanning nonlinear dielectric microscopy. Japan. J. Appl. Phys. 39: 5719-5722.

    Article  CAS  Google Scholar 

  36. Cho Y, Ohara K (2001) Higher-order nonlinear dielectric microscopy. Appl. Phys. Lett.79: 3842-3844.

    Google Scholar 

  37. Odagawa H, Cho Y (2002) Measuring ferroelectric polarization component parallel tothe surface by scanning nonlinear dielectric microscopy. Appl. Phys. Lett. 80: 2159-2161.

    Article  CAS  Google Scholar 

  38. Rabe U, Kopycinska M, Hirsekorn S, Munoz-Saldana J, Schneider GA, Arnold W(2002) High-resolution characterization of piezoelectric ceramics by ultrasonic scanningforce microscopy techniques. J. Phys. D: Appl.Phys. 35: 2621-2635.

    Article  CAS  Google Scholar 

  39. Rabe U, Scherer V, Hirsekorn S, Arnold W (1997) Nanomechanical surface characterization by atomic force acoustic microscopy. J. Vac. Sci. Technol. B 15: 1506-1511.

    Article  CAS  Google Scholar 

  40. Liu XX, Heiderhoff R, Abicht HP, Balk LJ (2002) Scanning near-field acoustic study offerroelectric BaTiO3 ceramics. J. Phys. D: Appl. Phys. 35: 74-87.

    Article  CAS  Google Scholar 

  41. Tsuji T, Saito S, Fukuda K, Yamanaka K, Ogiso H, Akedo J, Kawakami Y. (2005)Significant stiffness reduction at ferroelectric domain boundary evaluated by ultrasonicatomic force microscopy. Appl. Phys. Lett. 87: 071909.

    Article  CAS  Google Scholar 

  42. Hong S. (ed.) (2003) Nanoscale phenomena in ferroelectric thin films. Kluwer.Dordrecht.

    Google Scholar 

  43. Alexe M, Gruverman A (eds.) (2004) Nanoscale characterization of ferroelectrics:scanning probe microscopy approach. Springer. Berlin.

    Google Scholar 

  44. Gruverman A, Kholkin A (2006) Nanoscale ferroelectrics: processing, characterizationand future trends. Rep. Prog. Phys. 69: 2443-2474.

    Article  CAS  Google Scholar 

  45. Kholkin AL, Kalinin SV, Roelofs A, Gruverman A (2007) Review of ferroelectricdomain imaging by piezoresponse force microscopy. In Kalinin S, Gruverman A (eds)Electrical and electromechanical phenomena at the nanoscale. Springer, New York, vol1, pp 173-214.

    Google Scholar 

  46. Güthner P, Dransfeld K (1992) Local poling of ferroelectric polymers by scanning forcemicroscopy. Appl. Phys. Lett. 61: 1137-1139.

    Article  Google Scholar 

  47. Kholkin AL, Shvartsman VV, Kiselev, DA Bdikin IK (2006) Nanoscale characterization of ferroelectric materials for piezoelectric applications. Ferroelectrics 341: 3-19.

    Google Scholar 

  48. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric Ceramics. Academic. London.

    Google Scholar 

  49. Abplanalp M, Eng LM, Cünter P (1998) Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl. Phys. A 66: S231-S234.

    Article  CAS  Google Scholar 

  50. Nye JF (1985) Physical Properties of Crystals. Oxford University, Oxford.

    Google Scholar 

  51. Goldstein H (1978) Classical Mechanics. Addison-Wesley, Reading.

    Google Scholar 

  52. Harnagea C, Pignolet A, Alexe M, Hesse D (2001) Piezoresponse scanning forcemicroscopy: What quantitative information can we really get out of piezoresponsemeasurements on ferroelectric thin films. Integr. Ferroelectr. 38:667-673.

    Article  Google Scholar 

  53. Budimir M, Damjanovic D, Setter N (2005) Enhancement of the piezoelectric responseof tetragonal perovskite single crystals by uniaxial stress applied along the polar axis: Afree-energy approach. Phys. Rev. B 72: 064107.

    Article  CAS  Google Scholar 

  54. Budimir M, Damjanovic D, Setter N (2003) Piezoelectric anisotropy-phase transitionrelations in perovskite single crystals. J. Appl. Phys. 94: 6753-6761.

    Article  CAS  Google Scholar 

  55. Hoffman A, Jungk T, Soergel E (2007) Crosstalk correction in atomic force microscopy.Rev. Sci. Instr. 78: 016101.

    Article  CAS  Google Scholar 

  56. Peter F, Rüdiger A, Waser R (2006) Mechanical crosstalk between vertical and lateralpiezoresponse force microscopy. Rev. Sci. Instrum. 77: 036103.

    Article  CAS  Google Scholar 

  57. Kalinin SV, Rodriguez BJ, Jesse S, Karapetian E, Mirman B, Eliseev EA, MorozovskaAN (2007) Nanoscale electromechanics of ferroelectric and biological systems: A newdimension in scanning probe microscopy. Annu. Rev. Matter. Res. 37 189-238.

    Google Scholar 

  58. Kalinin SV and Bonnell DA (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65: 125408.

    Article  CAS  Google Scholar 

  59. Zhirnov VA (1959) A contribution to the theory of domain walls in ferroelectrics. Sov.Phys. JETP 8: 822-825.

    Google Scholar 

  60. Padilla J, Zhong W, Vanderbilt D (1996) First-principles investigation of 180° domainwalls in BaTiO3. Phys. Rev. B 53: R5969-R5973.

    Article  CAS  Google Scholar 

  61. Meyer B, Vanderbilt and D (2005) Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 65: 104111.

    Google Scholar 

  62. Strukov BA, Levanyuk AP (1998) Ferroelectric phenomena in crystals: physical foundations. Spinger. Berlin.

    Google Scholar 

  63. Kalinin SV, Jesse S, Rodriguez BJ, Shin J, Baddorf AP, Lee HN, Borisevich A,Pennycook SJ (2006) Spatial resolution, information limit, and contrast transfer inpiezoresponse force microscopy. Nanotechnology 17: 3400-3411.

    Article  CAS  Google Scholar 

  64. Born M, Wolf E (1975) Principles of Optics. Pergamon Press, Oxford.

    Google Scholar 

  65. Jungk T, Hoffmann A, Soergel E (2008) Impact of the tip radius on the lateral resolutionin piezoresponse force microscopy, New J. Phys. 10: 013019.

    Google Scholar 

  66. Rodriguez BJ, Jesse S, Baddorf AP, Kalinin SV (2006) High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy, Phys. Rev. Lett. 96: 237602.

    Article  CAS  Google Scholar 

  67. Gruverman A, Rodriguez BJ, Dehoff C, Waldrep D, Kingon AI, Nemanich RJ, Cross JS(2005) Direct studies of domain switching dynamics in thin film ferroelectric capacitors.Appl. Phys. Lett 87: 082902.

    Article  CAS  Google Scholar 

  68. Shvartsman VV, Kleemann W, Haumont R, Kreisel J (2007) Large bulk polarizationand regular domain structure in ceramic BiFeO3. Appl. Phys. Lett. 90: 172115.

    Article  CAS  Google Scholar 

  69. Teague JR, Gerson R, James WJ (1970) Dielectric hysteresis in single crystal BiFeO3.Solid State Commun. 8: 1073-1074.

    Google Scholar 

  70. Damjanovic D, Budimir M, Davis M, Setter N (2006) , Piezoelectric anisotropy:Enhanced piezoelectric response along nonpolar directions in perovskite crystals. J.Mater. Sci. 41: 65-76.

    Article  CAS  Google Scholar 

  71. Munoz-Saldana J, Hoffmann MJ, Schneider GA (2003) Ferroelectric domains in coarse-grained lead zirconate titanate ceramics characterized by scanning force microscopy. J.Mat. Res. 18: 1777-1786.

    Article  CAS  Google Scholar 

  72. Roelofs A, Schneller T, Szot K, Waser R (2002) Piezoresponse force microscopy oflead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett.81: 5231-5233.

    Google Scholar 

  73. Roytburd AL (1998) Thermodynamics of polydomain heterostructures. I. Effect ofmacrostresses. J. Appl. Phys. 83: 228-238.

    CAS  Google Scholar 

  74. Arlt G, Sasko P (1980) Domain configuration and equilibrium size of domains inBaTiO3 ceramics. J. Appl. Phys. 51: 4956-4960.

    Article  CAS  Google Scholar 

  75. Gruverman A (1999) Scaling effect on statistical behaviour of switching parameters offerroelectric capacitors. Appl. Phys. Lett. 75: 152-1454.

    Article  Google Scholar 

  76. Bdikin IK, Shvartsman VV, Kholkin AL, Kim SH (2004). Ferroelectric domain structure and local piezoelectric properties of sol-gel derived Pb(Zr1-xTix)O3 films. In Hoffmann-Eifert S, Funakubo H, Kingon AI, Koutsaroff I, Joshi V (eds.) Ferroelectric thin films XII, pp 55-60.

    Google Scholar 

  77. Wu A, Vilarinho PM, Shvartsman VV, Suchanek G, Kholkin AL (2005) Domainpopulations in lead zirconate titanate thin films of different compositions viapiezoresponse force microscopy. Nanotechnology 16: 2587-2595.

    Article  CAS  Google Scholar 

  78. Shvartsman VV, Pankrashkin AV, Afanasjev VP, Kaptelov EY, Pronin IP, Kholkin AL(2005) Piezoelectric properties of self-polarized Pb(Zr1-xTix)O3 thin films probed byscanning force microscopy. Integrated Ferroelectrics 69: 103-111.

    Article  CAS  Google Scholar 

  79. Afanasjev VP, Petrov AA, Pronin IP, Tarakanov EA, Kaptelov EJ, Graul J (2001)Polarization and self-polarization in thin PbZr1-xTixO3 (PZT) films. J. Phys.: Condens.Matter 13: 8755-8763.

    CAS  Google Scholar 

  80. Warren WL, Tuttle BA, Dimos D, Pike GE, Al-Shareef HN, Ramesh R, Evans JT(1996) Imprint in ferroelectric capacitors. Jpn. J. Appl. Phys. 35: 1521-1524.

    Article  CAS  Google Scholar 

  81. Spierings GACM, Dormans GJM, Moors WGJ, Ulenaers MJE, Larsen PK (1995)Stresses in PT/Pb(Zr,Ti)O3/PT thin-film stacks for integrated ferroelectric capacitors. J.Appl. Phys. 78: 1926-1933.

    Article  CAS  Google Scholar 

  82. Kholkin AL, Brooks KG, Taylor DV, Hiboux S, Setter N (1998) Self-polarization effectin Pb(Zr,Ti)O3 thin films. Integr. Ferroelectr. 22: 525-533.

    Article  CAS  Google Scholar 

  83. Pronin IP, Kaptelov EY, Tarakanov EA, Sorokin LM, Afanasjiev VP, Pankrashkin AV(2002) Self-polarization and migratory polarization in thin-film ferroelectric capacitor.Integr. Ferroelectr. 49: 285-294.

    Article  CAS  Google Scholar 

  84. Tybell T, Paruch P, Giamarchi T, Trsicone J-M (2002) Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89: 097601.

    Google Scholar 

  85. Cho Y, Hashimoto S, Odagawa N, Tanaka K, Hiranaga Y (2005) Realization of 10Tbit/in.2 memory density and subnanosecond domain switching time in ferroelectric datastorage. Appl. Phys. Lett. 87: 232907.

    Google Scholar 

  86. Rosenman G, Urenski P, Argonin A, Arie A, Rosenwaks Y (2003) Nanodomainengineering in RbTiOPO4 ferroelectric crystals. Appl. Phys. Lett. 82: 3934-3936.

    Article  CAS  Google Scholar 

  87. Rosenwaks Y, Dahan D, Molotski M, Rosenman G (2005) Ferroelectric domain engineering using atomic force microscopy tip arrays in the domain breakdown regime. Appl. Phys. Lett. 86: 012909.

    Article  CAS  Google Scholar 

  88. Kalinin SV, Bonnell DA, Alvarez T, Lei X, Hu Z, Ferris JH, Zhang Q, Dunn S (2002)Atomic polarization and local reactivity on ferroelectric surfaces: A new route towardcomplex nanostructures. Nano Letters 2: 589-593.

    Article  CAS  Google Scholar 

  89. Kalinin SV, Bonnell DA, Alvarez T, Lei X, Hu Z, Shao R, Ferris JH (2004) Ferroelectric lithography of multicomponent nanostructures. Adv. Mat. 16: 795-799.

    Article  CAS  Google Scholar 

  90. Durkan C, Welland ME, Chu DP, Migliorato P (1999) Probing domains at the nanometre scale in piezoelectric thin films. Phys. Rev. B 60: 16198-16204.

    Article  CAS  Google Scholar 

  91. Molotskii M, Agronin A, Uresnki P, Shvebelman M, Rosenman G, Rosenwaks Y(2003) Ferroelectric Domain Breakdown. Phys. Rev. Lett. 90: 107601.

    Article  CAS  Google Scholar 

  92. Molotskii M (2003) Generation of ferroelectric domains in atomic force microscope. J.Appl. Phys. 93: 6234-6237.

    Article  CAS  Google Scholar 

  93. Landauer R (1957) Electrostatic considerations in BaTiO3 domain formation duringpolarization reversal. J. Appl. Phys. 28: 227-234.

    Article  CAS  Google Scholar 

  94. Gruverman A, Kolosov O, Hatano J, Takahashi K, Takumoto H (1995) Domain-structure and polarization reversal in ferroelectrics studied by atomic-force microscopy. J. Vac. Sci. Technol. B 13: 1095-1099.

    Article  CAS  Google Scholar 

  95. Eng LM, Abplanalp M, Günter P (1998) Ferroelectric domain switching in tri-glycinesulphate and barium-titanate bulk single crystals by scanning force microscopy. Appl.Phys. A 66: S679-S683.

    Article  CAS  Google Scholar 

  96. Rosenman G, Urenski P, Argonin A, Rosenwaks Y, Molotskii M (2003) Submicronferroelectric domain structures tailored by high-voltage scanning probe microscopy.Appl. Phys. Lett. 82: 103-105.

    Article  CAS  Google Scholar 

  97. Kalinin SV, Gruverman A, Rodriguez BJ, Shin J, Baddorf AP, Karapetian E, KachanovM (2005) Nanoelectromechanics of polarization switching in piezoresponse forcemicroscopy. J. Appl. Phys. 97: 074305.

    Google Scholar 

  98. Morozovska AN, Eliseev EA (2006) Screening and size effects on the nanodomaintailoring in ferroelectrics semiconductors. Phys. Rev. B 73: 104440.

    Article  CAS  Google Scholar 

  99. Morozovska AN, Eliseev EA, Kalinin SV (2006) Domain nucleation and hysteresis loopshape in piezoresponse force spectroscopy. Appl. Phys. Lett. 89: 192901.

    Article  CAS  Google Scholar 

  100. Emelyanov AY (2005) Coherent ferroelectric switching by atomic force microscopy.Phys. Rev. B 71: 132102.

    Article  CAS  Google Scholar 

  101. Gruverman A, Auciello O, Tokumoto H (1998) Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mat. Sci. 28: 101-123.

    Article  CAS  Google Scholar 

  102. Li J, Nagaraj B, Liang H, Cao W, Lee CH, Ramesh R (2004) Ultrafast polarizationswitching in thin-film ferroelectrics. Appl. Phys. Lett. 84: 1174-1176.

    Article  CAS  Google Scholar 

  103. Paruch P, Tybell T, Triscone JM (2001) Nanoscale control of ferroelectric polarizationand domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 79: 530-532.

    Article  CAS  Google Scholar 

  104. Paruch P, Giamarchi T, Tybell T, Triscone JM (2006) Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films. J. Appl. Phys. 100: 051608.

    Article  CAS  Google Scholar 

  105. Gruverman A, Kholkin A, Kingon A, Tokumoto H (2001) Asymmetric nanoscaleswitching in ferroelectric thin films by scanning force microscopy. Appl. Phys. Lett. 78:2751-2753.

    Article  CAS  Google Scholar 

  106. Kim Y, Cho Y, Hong S, Bühlmann S, Park H, Min DK, Kim SH (2006) Tip travellingand grain boundary effects in domain formation using piezoelectric force microscopyfor probe storage applications. Appl. Phys. Lett. 89: 172909.

    Article  CAS  Google Scholar 

  107. Gruverman A, Wu D, and Scott JF (2008) Piezoresponse force microscopy studies ofswitching behaviour of ferroelectric capacitors on a 100-ns time scale. Phys Rev. Lett.100: 097601

    Article  CAS  Google Scholar 

  108. Kim DJ, Jo JY, Kim TH, Yang SM, Chen B, Kim YS, Noh TW (2007) Observation ofinhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors. Appl. Phys. Lett.91: 132903.

    Article  CAS  Google Scholar 

  109. Gruverman A, Wu D, Fan HJ, Vrejoiu I, Alexe M, Harrison RJ, and Scott JF (2008)Vortex ferroelectric domains. J. Phys.: Condens. Matter 20: 342201.

    Google Scholar 

  110. Kolmogorov AN (1937) Statistical theory of crystallization of metals. (in Russian) Bull.Acad. Sci. USSR. Ser. Math. 1: 355-359.

    Google Scholar 

  111. Avrami M (1939) Kinetics of Phase Change. I General Theory. J. Chem Phys. 7: 1103-1112.

    CAS  Google Scholar 

  112. Ishibashi Y and Takagi Y (1971) Note on ferroelectric domain switching. J. Phys. Soc.Japan 31: 506-510.

    Article  CAS  Google Scholar 

  113. Iona F, Shirane G (1962) Ferroelectric crystals. Pergamon Press. Oxford.

    Google Scholar 

  114. Kholkin AL, Akdogan EK, Safari A, Chauvy PF, Setter N (2001) Characterization ofthe effective electrostriction coefficients in ferroelectric thin films. J.Appl. Phys. 89:8066-8073.

    Article  CAS  Google Scholar 

  115. Kalinin SV, Gruverman A, Bonnell DA (2004) Quantitative analysis of nanoscaleswitching in SrBi2Ta2O9 thin films by piezoresponse force microscopy. Appl. Phys.Lett. 85: 795-797.

    Article  CAS  Google Scholar 

  116. Hong S, Woo J, Shin H, Jeon JU, Pak YE (2001) Principle of ferroelectric domainimaging using atomic force microscope. J. Appl. Phys. 89: 1377-1386.

    Article  CAS  Google Scholar 

  117. Kholkin AL, Bdikin IK, Shvartsman VV, Orlova A, Kiselev DA, Bogomolov AA, KimSH (2005) Local Electromechanical properties of ferroelectric materials forpiezoelectric applications. In Kalinin SV, Goldberg B, Eng LM, Huey D (eds) Scanning-Probe and Other Novel Microscopies of Local Phenomena in Nanostructured Materials (Mat. Res. Soc. Proc. 838E) O7.6.

    Google Scholar 

  118. Shvartsman VV, Pertsev NA, Herrero JM, Zaldo C, Kholkin AL (2005) Nonlinear localpiezoelectric deformation in ferroelectric thin films studied by scanning forcemicroscopy. J. Appl. Phys. 97: 104105.

    Article  CAS  Google Scholar 

  119. Kholkin AL, Wütchrich C, Taylor DV, Setter N (1996) Interferometric measurements ofelectric field-induced displacements in piezoelectric thin films. Rev. Sci. Instr. 67: 1935-1941.

    Article  CAS  Google Scholar 

  120. Jesse S, Baddorf AP, Kalinin SV (2006) Switching spectroscopy piezoresponse forcemicroscopy of ferroelectric materials. Appl. Phys. Lett. 88: 062908.

    Article  CAS  Google Scholar 

  121. Rodriguez BJ, Nemanich RJ, Kingon A, Gruverman A, Kalinin SV, Terabe K, Liu XY,Kitamura K (2005) Domain growth kinetics in lithium niobate single crystals studied bypiezoresponse force microscopy. Appl. Phys. Lett. 86: 012906.

    Article  CAS  Google Scholar 

  122. Jesse S, Rodriguez BJ, Choudhury S, Baddorf AP, Vrejoiu I, Hesse D, Alexe M, EliseevEA, Morozovska AN, Zhang J, Chen LQ, Kalinin SV (2008) Direct imaging of thespatial and energy distribution of nucleation centres in ferroelectric materials. NatureMater. 7: 209.

    Article  CAS  Google Scholar 

  123. Jesse S, Rodriguez BJ, Alexe M, Kalinin SV (2008) Spatially resolved mapping ofpolarization switching behaviour in nanoscale ferroelectrics. Adv. Mater. 20:109-114.

    Article  CAS  Google Scholar 

  124. Bintachitt P, Trolier-McKinstry S, Seal K, Jesse S, and Kalinin SV (2009) Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structure. Appl. Phys. Lett. 94: 042906.

    Article  CAS  Google Scholar 

  125. Ablanalp M, Fousek J, Günter P (2001) Higher Order Ferroic Switching Induced byScanning Force Microscopy. Phys. Rev. Lett. 86: 5799-5802.

    Article  CAS  Google Scholar 

  126. Morita T, Cho Y (2003) Observation of antiparallel polarization reversal using ascanning nonlinear dielectric microscope. Japan. J. Appl. Phys. 42: 6214-6217.

    Article  CAS  Google Scholar 

  127. Bühlmann S, Colla E, Muralt P (2005) Polarization reversal due to charge injection inferroelectric films. Phys. Rev. B 72: 214120.

    Article  CAS  Google Scholar 

  128. Shishkin EI, Shur VI, Mieth O, Eng LM, Galambos LL, Miles RO (2006) Kinetics ofthe local polarization switching in stoichiometric LiTaO3 under electric field appliedusing the tip of scanning probe microscope. Ferroelectrics 340: 129-136.

    Article  CAS  Google Scholar 

  129. Kholkin AL, Bdikin IK, Shvartsman VV, Pertsev NA (2007) Anomalous polarizationinversion in ferroelectrics via scanning force microscopy. Nanotechnology 18: 095502.

    Article  CAS  Google Scholar 

  130. Emelyanov AY, Pertsev NA, Kholkin AL (2002) Effect of external stress on ferroelectricity in epitaxial thin films. Phys. Rev. B 66: 214108.

    Article  CAS  Google Scholar 

  131. Tagantsev AK, Stolichnov IA (1999) Injection-controlled size effect on switching offerroelectric thin films. Appl. Phys. Lett. 74: 1326-1328.

    Article  CAS  Google Scholar 

  132. Fridkin V M (1979) Photoferroelectrics. Springer. New York.

    Google Scholar 

  133. Würfel P, Batra IP (1976) Depolarization effects in thin ferroelectric films.Ferroelectrics 12: 55-61.

    Google Scholar 

  134. Benedetto JM, Moore RA, McLean FB (1994) Effects of operating conditions on thefast-decay component of the retained polarization in lead zirconate titanate thin films. J.Appl. Phys. 75: 460-466.

    Article  CAS  Google Scholar 

  135. Kholkin AL, Tagantsev AK, Colla EL, Taylor DV, Setter N (1997) Piezoelectric anddielectric aging in Pb(Zr,Ti)O3 thin films and bulk ceramics. Integr. Ferroelectr. 15:317-324.

    Article  CAS  Google Scholar 

  136. Shvartsman VV, Kholkin AL (2003) Investigation of switching behaviour in PbZr0.55Ti0.45O3 thin films by means of scanning probe microscopy. Ferroelectrics 286: 1013-1021.

    Article  CAS  Google Scholar 

  137. Kakalios J, Street RA, Jackson WB (1987) Stretched-exponential relaxation arisingfrom dispersive diffusion of hydrogen in amorphous silicon. Phys. Rev. Lett. 59: 1037-1040.

    Article  CAS  Google Scholar 

  138. Gruverman A, Tokumoto H, Prakash AS, Aggarwal S, Yang B, Wuttig M, Ramesh R,Auciello O (1997) Nanoscale imaging of domain dynamics and retention in ferroelectricthin films. Appl. Phys. Lett. 71: 3492-3494.

    Article  CAS  Google Scholar 

  139. Jo W, Kim DC, Hong JW (2000) Reverse-poling effects on charge retention inPb(Zr,Ti)O3(001)/LaNiO3(001) heterostructures. Appl. Phys. Lett. 76: 390-392.

    Article  CAS  Google Scholar 

  140. Gruverman A, Tanaka M (2001) Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale. J. Appl. Phys. 89:1836-1843.

    Article  CAS  Google Scholar 

  141. Ganpule CS, Roytburd AL, Nagarajan V, Hill BK, Ogale SB, Williams ED, Ramesh R,Scott JF (2002) Polarization relaxation kinetics and 180° domain wall dynamics inferroelectric thin films. Phys. Rev. B 65: 014101.

    Article  CAS  Google Scholar 

  142. Zavala G, Fendler JH, Trolier-McKinstry S (1997) Characterization of ferroelectric leadzirconate titanate films by scanning force microscopy. J. Appl. Phys. 81: 7480-7491.

    Article  CAS  Google Scholar 

  143. Kholkin AL, Shvartsman VV, Emelyanov AY, Poyato R, Calzada ML, Pardo L (2003)Stress-induced suppression of piezoelectric properties in PbTiO3:La thin films viascanning force microscopy. Appl. Phys. Lett. 82: 2127-2129.

    Article  CAS  Google Scholar 

  144. Pertsev NA, Zembiglotov AG, Tagantsev AK (1998) Effect of mechanical boundaryconditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80:1988-1991.

    Article  CAS  Google Scholar 

  145. Tagantsev AK, Stolichnov I, Colla EL, Setter N (2001) Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90: 1387-1402.

    Article  CAS  Google Scholar 

  146. Kim SJ, Jiang Q (1996) Microcracking and electric fatigue in polycrystalline ferroelectric ceramics. Smart. Mater. Struct. 5: 321-326.

    Article  CAS  Google Scholar 

  147. Lupascu DC (2004) Fatigue in ferroelectric ceramics and related issues. SpringerHeidelberg.

    Google Scholar 

  148. Shvartsman VV, Kholkin AL, Verdier C, Lupascu DC (2005) Fatigue-induced evolutionof domain structure in ferroelectric lead zirconate titanate ceramics investigated bypiezoresponse force microscopy. J. Appl. Phys. 98: 094109.

    Article  CAS  Google Scholar 

  149. Nuffer J, Lupascu DC, Glazounov A, Kleebe HJ, Rödel J (2002) Microstructuralmodifications of ferroelectric lead zirconate titanate ceramics due to bipolar electricfatigue. J. Eur. Ceram. Soc. 22: 2133-2142.

    Article  CAS  Google Scholar 

  150. Lupascu DC, Rabe U (2002) Cyclic cluster growth in ferroelectric perovskites. Phys.Rev. Lett. 89: 187601.

    Article  CAS  Google Scholar 

  151. Zhang Y, Lupascu DC, Aulbach E, Baturin I, Bell A, Rödel J (2005) Heterogeneity offatigue in bulk lead zirconate titanate. Acta Mater. 53: 2203-2213.

    Article  CAS  Google Scholar 

  152. Zhang Y, Lupascu DC, Balke N, Rödel J (2005) Near electrode fatigue in lead zirconatetitanate ceramics. J. Phys. IV 128: 97-103.

    Article  CAS  Google Scholar 

  153. Colla EL, Stolichnov I, Bradely PE, Setter N (2003) Direct observation of inverselypolarized frozen nanodomains in fatigued ferroelectric memory capacitors. Appl. Phys.Lett. 82: 1604-1606.

    Article  CAS  Google Scholar 

  154. Liu JS, Zhang SR, Dai LS, Yuan Y (2005) Domain evolution in ferroelectric thin filmsduring fatigue process. J. Appl. Phys. 97: 104102.

    Article  CAS  Google Scholar 

  155. Gruverman A, Auciello O, Tokumoto H (1996) Nanoscale investigation of fatigueeffects in Pb(Zr,Ti)O3 films. Appl. Phys. Lett. 69: 3191-3193.

    Article  CAS  Google Scholar 

  156. Colla EL, Hong S, Taylor DV, Tagantsev AK, Setter N, No K (1998) Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3thin film capacitors with Pt electrodes. Appl. Phys. Lett. 72: 2763-2765.

    Article  CAS  Google Scholar 

  157. Kholkin AL, Colla EL, Tagantsev AK, Taylor DV, Setter N (1996) Fatigue of piezoelectric properties in Pb(Zr,Ti)O3 films. Appl. Phys. Lett. 68: 2577-2579.

    Article  CAS  Google Scholar 

  158. Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76: 241-267.

    CAS  Google Scholar 

  159. Burns G, Dacol FH (1983) Glassy polarization behaviour in ferroelectric compoundsPbMg1/3Nb2/3O3 and PbZn1/3Nb2/3O3. Solid State Commun. 48: 853-586.

    Article  CAS  Google Scholar 

  160. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behaviour in relaxor-basedferroelectric single crystals. J. Appl. Phys. 82: 1804-1811.

    Article  CAS  Google Scholar 

  161. Kleemann W, Samara GA, Dec J (2005) Relaxor ferroelectrics - from random fieldmodels to glassy relaxation and domain states. In Waser R, Boettger U, Tiedke S (eds)Polar oxides: properties, characterization and imaging. Wiley, Weinheim, pp 129-206.

    Google Scholar 

  162. Bokov AA, Ye ZG (2006) Recent progress in relaxor ferroelectrics with perovskitestructure. J. Mater. Sci. 41: 31-52.

    Article  CAS  Google Scholar 

  163. Lehnen P, Kleemann W, Woike T, Pankrath P (2001) Ferroelectric nanodomains in theuniaxial relaxor system Sr0.61-xBa0.39Nb2O6:Cex3+: Phys. Rev. B 64: 224109.

    Google Scholar 

  164. Kleemann W, Dec J, Shvartsman VV, Kutnjak S, Braun T (2006) Two-dimensionalIsing model criticality in a three-dimensional uniaxial relaxor ferroelectric with frozenpolar nanoregions. Phys. Rev. Lett. 97: 065702.

    Article  CAS  Google Scholar 

  165. Shvartsman VV, Kleemann W (2006) Evolution of nanodomains in the uniaxial relaxorSr0.61Ba0.39Nb2O6:Ce. IEEE Transactions UFFC 53: 2275-2279.

    Google Scholar 

  166. Shvartsman VV, Kleemann W, Łukaciewicz T, Dec J (2008) Nanopolar structure in SrxBa1-xNb2O6 single crystals tuned by the Sr/Ba ratio and investigated by piezoelectric force microscopy. Phys. Rev. B 77: 054105.

    Article  CAS  Google Scholar 

  167. Shvartsman VV, Kholkin AL (2004) Domain structure of 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 studied by piezoresponse force microscopy. Phys. Rev. B 69: 014102.

    Google Scholar 

  168. Bai F, Li J, Viehland D (2005) Domain engineered states over various length scales in(001) oriented PbMg1/3Nb2/3O3-x%PbTiO3 crystals: Electrical history dependence ofhierarchal domains. J. Appl. Phys.; 97: 054103.

    Article  CAS  Google Scholar 

  169. Zhao X, Dai JY, Wang J, Chen HLW, Chou CL, Wan XM, Luo HS (2005) Relaxorferroelectric characteristics and temperature-dependent domain structure in a (110)-cut(PbMg1/3Nb2/3O3)0.75(PbTiO3)0.25 single crystal. Phys. Rev. B 72: 064114.

    Google Scholar 

  170. Shvartsman VV and Kholkin AL (2007) Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single crystals. J. Appl. Phys. 101: 064108.

    Google Scholar 

  171. Abplanalp M, Barosova D, Bridenbaugh P, Erhart J, Fousek J, Günter P (2002) Scanning force microscopy of domain structures in Pb(Zn1/3Nb2/3)O3-8% PbTiO3 and Pb(Mg1/3Nb2/3)O3-29% PbTiO3 J. Appl. Phys. 91: 3797-3805.

    Article  CAS  Google Scholar 

  172. Bdikin IK, Shvartsman VV, Kholkin AL (2003) Nanoscale domains and local piezoelectric hysteresis in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. Appl. Phys. Lett. 83: 4232-4234.

    Article  CAS  Google Scholar 

  173. Shvartsman VV, Kholkin AL, Orlova A, Kiselev D, Bogomolov AA, Sternberg A(2005) Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics. Appl. Phys. Lett. 86: 202907.

    Article  CAS  Google Scholar 

  174. Kiselev DA, Bdikin IK, Selezneva EK, Bormanis K, Sternberg A, Kholkin AL (2007)Grain size effect and local disorder in polycrystalline relaxors via scanning probemicroscopy. J. Phys. D: Appl. Phys. 40: 7109-7112.

    Article  CAS  Google Scholar 

  175. Salak AN, Shvartsman VV, Seabra MP, Kholkin AL, Ferreira VM (2004) Ferroelectric-to-relaxor transition behaviour of BaTiO3 ceramics doped with La(Mg1/2Ti1/2)O3. J.Phys.: Condens. Matter. 16: 2785-2794.

    CAS  Google Scholar 

  176. Shvartsman VV, Kleemann W, Dec J, Xu ZK, Lu SG (2006) Diffuse phase transition inBaTi1-xSnxO3 ceramics: An intermediate state between ferroelectric and relaxorbehaviour. J. Appl. Phys. 99: 124111.

    Article  CAS  Google Scholar 

  177. Xu G, Viehland D, Li JF, Gehring PM, Shirane G (2003) Evidence of decoupled latticedistortion and ferroelectric polarization in the relaxor system PMN-xPT. Phys. Rev. B68: 212410.

    Google Scholar 

  178. Conlon KH, Luo H, Viehland D, Li JF, Whan T, Fox JH, Stock C, Shirane G (2004)Direct observation of the near-surface layer in Pb(Mg1/3Nb2/3)O3 using neutrondiffraction. Phys. Rev. B 70: 172204.

    Article  CAS  Google Scholar 

  179. Dec J, Shvartsman VV, Kleemann W (2006) Domain-like precursor clusters in theparaelectric phase of the uniaxial relaxor Sr0.61Ba0.39Nb2O6. Appl. Phys. Lett. 89: 212901.

    Google Scholar 

  180. Shvartsman VV, Kholkin AL, Tyunina M, Levoska J (2005) Relaxation of inducedpolar state in relaxor PbMg1/3Nb2/3O3 thin films studied by piezoresponse forcemicroscopy. Appl. Phys. Lett. 86: 222907.

    Article  CAS  Google Scholar 

  181. Gladkii VV, Kirikov VA, Pronina EV (2003) The slow polarization kinetics of theferroelectric relaxor lead magnesium niobate. Phys. Solid State 45: 1238-1244.181. Boikov YA, Goltsman BM, Yarmarkin VK, Lemanov VV (2001) Slow capacitancerelaxation in (BaSr)TiO3 thin films due to the oxygen vacancy redistribution. Appl.Phys. Lett. 78: 3866-3868.

    Article  CAS  Google Scholar 

  182. Shvartsman VV, Emelyanov AY, Kholkin AL, Safari A (2002) Local hysteresis andgrain size effect in PMN-PT thin films. Appl. Phys. Lett., 81: 117-119.

    Article  CAS  Google Scholar 

  183. Mishima T, Fujioka H, Nagakari S, Kamigaki K, Nambu S (1997) Lattice ImageObservations of Nanoscale Ordered Regions in Pb(Mg1/3Nb2/3)O3. Jpn. J. Appl. Phys.36: 6141-6144.

    Google Scholar 

  184. Scott JF, Diuker HM, Beale PD, Pouligny B, Dimmler K, Parris M, Butler D, Eaton S(1988) Properties of ceramic KNO3 thin-film memories. Physica B+C 150: 160-167.

    Google Scholar 

  185. Zhong WL, Wang YG, Zhang PL, Qu BD (1994) Phenomenological study of the sizeeffect on phase transitions in ferroelectric particles. Phys. Rev B 50: 698-703.

    Article  CAS  Google Scholar 

  186. Wang YG, Zhong WL, Zhang PL (1995) Lateral size effects on cells in ferroelectricfilms. Phys. Rev. B 51: 17235-17238.

    Article  CAS  Google Scholar 

  187. Wang SL, Smith SRP (1995) Landau theory of the size-driven phase transition inferroelectrics. J. Phys.: Condens. Matter 7: 7163-7171.

    CAS  Google Scholar 

  188. Li S, Eastman JA, Vetrone JM, Foster CM, Newnham RE, Cross LE (1997) Dimensionand size effects in ferroelectrics. Jpn. J. Appl. Phys. 36: 5169-5174.

    Article  CAS  Google Scholar 

  189. Ganpule C, Stanishevsky A, Su Q, Aggarwal S, Melngailis J, Williams E, Ramesh R(1999) Scaling of ferroelectric properties in thin films. Appl. Phys. Lett. 75: 409-411

    Article  CAS  Google Scholar 

  190. Ganpule C, Stanishevsky A, Aggarwal S, Melngailis J, Williams E, Ramesh R, Joshi V,Araujo CP (1999) Scaling of ferroelectric and piezoelectric properties inPt/SrBi2Ta2O9/Pt thin films. Appl. Phys. Lett. 75: 3874-3876.

    Article  CAS  Google Scholar 

  191. Bühlmann S, Dwir B, Baborowski J, Muralt P (2002) Size effect in mesoscopic epitaxialferroelectric structures: Increase of piezoelectric response with decreasing feature size.Appl. Phys. Lett. 80: 3195-3197.

    Article  CAS  Google Scholar 

  192. Alexe M. Harnagea C, Erfurth W, Hesse D, Gösele U (2000) 100-nm lateral sizeferroelectric memory cells fabricated by electron-beam direct writing. Appl. Phys. A 70:247-251.

    Google Scholar 

  193. Waser R, Schneller T, Hoffmann-Eifert S, Ehrhart P (2001) Advanced chemical deposition techniques - from research to production. Integr. Ferroelectr. 36: 3-20.

    Article  CAS  Google Scholar 

  194. Roelofs A, Schneller T, Szot K, Waser R (2002) Piezoresponse force microscopy oflead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett.81:5231-5233.

    Google Scholar 

  195. Clemens S, Röhrig S, Rüdiger A, Schneller T, Waser R (2006) Variable size and shapedistribution of ferroelectric nanoislands by chemical mechanical polishing. Small 2:500-502.

    Article  CAS  Google Scholar 

  196. Peter F, Rüdiger A, Waser A, Szot K, Reichenberg B (2005) Comparison of in-planeand out-of-plane optical amplification in AFM measurements. Rev. Sci. Instr. 76: 046101.

    Article  CAS  Google Scholar 

  197. Hiranaga I, Cho Y (2005) Ultrahigh-density ferroelectric data storage with low bit errorrate. Jap. J. Appl. Phys. 44: 6960-6963.

    Article  CAS  Google Scholar 

  198. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz MP, Chu YH, Ederer C,Spaldin NA, Das RR, Kim DM, Baek SH, Eom CB, Ramesh R (2006) Electrical controlof anti-ferromagnetic domains in multiferroic BiFeO3 films at room temperature. NatureMater. 5: 823-829.

    Article  CAS  Google Scholar 

  199. Kalinin SV, Rodriguez BJ, Jesse S, Thundat T, Gruverman A (2005) Electromechanicalimaging of biological systems with sub-10 nm resolution. Appl. Phys. Lett. 87: 053901.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shvartsman .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Shvartsman, V.V., Kholkin, A.L. (2011). Nanoscale Investigation of Polycrystalline Ferroelectric Materials via Piezoresponse Force Microscopy. In: Multifunctional Polycrystalline Ferroelectric Materials. Springer Series in Materials Science, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2875-4_9

Download citation

Publish with us

Policies and ethics