Skip to main content

Quantitative Texture Analysis of Polycrystalline Ferroelectrics

  • Chapter
Multifunctional Polycrystalline Ferroelectric Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 140))

Abstract

A large number of physical properties in most crystals are anisotropic. This is even more important in polar materials, like ferroelectrics, where the polarization determines their behaviour. In polycrystals, researchers have developed techniques to grow crystals along preferential orientations and take advantage of the highest values of the anisotropic properties. The preparation of ferroelectric materials with preferential crystallographic orientations, or textures, is useful in obtaining ferroelectric materials with improved properties for a variety of technological applications, like Non-Volatile Ferroelectric Random Access Memories (FeRAMs) [1, 2], where we use the polarization vector for the 0 and 1 bits, or MicroElectroMechanical Systems (MEMS) [3], where the highest piezoelectric coefficients are associated to specific crystallographic directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scott J.F. (2000) Ferroelectric Memories. Springer Series in Advanced Microelectron-ics 3, Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  2. Arimoto Y., Ishiwara H. (2004) Current status of ferroelectric random-access memory.MRS Bull. 29: 823-828

    Google Scholar 

  3. Muralt P., Baborowski J., Ledermann N. (2002) Chapter 12. Piezoelectre micro electromechanical-systems with PbZrxTi1-xO3 thin films: Integration and application issues. In: N. Setter (Ed.) Piezoelectric Materials in Devices, EPFL Swiss Federal Institute of Technology, Lausanne, pp. 231-260

    Google Scholar 

  4. Wouters D.J., Willems G., Lee E.U., Maes H.E. (1997) Elucidation of the switchingprocesses in tetragonal PZT by hysteresis loop and impedance analysis. Integr. Ferro-electr. 15:79-87

    Article  CAS  Google Scholar 

  5. Jia C.L., Urban K., Hoffmann S., Waser R. (1998) Microstructure of columnar-grainedSrTiO3 and BaTiO3 thin film prepared by chemical solution deposition. J. Mater. Res.13:2206-2217

    Google Scholar 

  6. 6 Kim S.-H., Park D.-Y., Woo H.-J., Lee D.-S., Ha J., Hwang C.S., Shim I.-B., Kingon A.I. (2002) Orientation effects in chemical solution derived Pb(Zr0.3,Ti0.7)O3 thin films on ferroelectric properties. Thin Solid Films 416:264-270

    Article  CAS  Google Scholar 

  7. Bouregba R., Poullain G., Vilquin B., Murray H. (2000) Orientation control of texturedPZT thin films sputtered on silicon substrate with TiOx seeding. Mater. Res.Bull. 35:1381-1390

    Article  CAS  Google Scholar 

  8. Randle V., Engler O. (2000) Introduction to texture analysis. Macrotexture, microtex-ture and orientation mapping. CRC Press, Boca Raton, Florida

    Google Scholar 

  9. Brentano J.C.M. (1946) Parafocusing properties of microcrystalline powder layers in x-ray diffraction applied to the design of x-ray goniometers. J. Appl. Phys. 17:420-434

    Article  CAS  Google Scholar 

  10. Wcislak L., Bunge H.J., Nauer-Gerhardt C.U. (1993) X-ray diffraction texture analysiswith a position sensitive detector. Zeitschrift für Metallkunde 84: 479-493

    CAS  Google Scholar 

  11. Heizmann J.J., Laruelle C. (1986) Simultaneous measurement of several x-ray polefigures. J. App. Cryst. 19:467-472

    Article  CAS  Google Scholar 

  12. Legrand C., Yi J.H., Thomas P., Guinebretière R., Mercurio J.-P. (1999) Structuralcharacterisation of sol-gel SrBi2Nb2O9 thin film deposited on (001) SrTiO3 single crys-tal. J. Eur. Ceram. Soc. 19: 1379-1381

    Article  CAS  Google Scholar 

  13. Lotgering F.K. (1959) Topotactical reactions with ferrimagnetic oxides having hexago-nal crystal structures-I. J. Inorg. Nucl. Chem. 9:113-123

    Article  CAS  Google Scholar 

  14. Jones J.L., Slamovich E.B., Bowman K.J. (2004) Critical evaluation of the Lotgeringdegree of orientation texture indicator. J. Mater. Res. 19: 3414-3422

    Article  CAS  Google Scholar 

  15. Brosnan K.H., Messing G.L., Meyer Jr. R.J., Vaudin M.D. (2006) Texture measure-ments in <001> fiber oriented PMN-PT. J. Amer. Ceram. Soc. 89 1965-1971

    Article  CAS  Google Scholar 

  16. O'Connor B.H., Li D.Y., Sitepu H. (1991) Strategies for preferred orientation correc-tions in x-ray powder diffraction using line intensity ratios. Advances in X-ray Analysis34 409-415

    Google Scholar 

  17. Capkova P., Peschar R., Schenk H. (1993) Partial multiplicity factors for texture correc-tion of cubic structures in the disc-shaped crystallite model. J. Appl. Cryst. 26:449-452

    Article  Google Scholar 

  18. Cerny R, Valvoda V., Cladek M. (1995) Empirical texture corrections for asymmetricdiffraction and inclined textures. J. Appl. Cryst. 28:247-253

    Article  CAS  Google Scholar 

  19. O'Connor B.H., Li D.Y., Sitepu H. (1992) Texture characterization in x-ray powderdiffraction using the March formula. /Advances in X-ray Analysis. Advances in X-rayAnalysis 35:277-283

    Google Scholar 

  20. Pernet M., Chateigner D., Germi P., Dubourdieu C., Thomas O., Sénateur J.-P., Cham-bonnet D., Belouet C. (1994) Texture influence on critical current density of YBCOfilms deposited on (100)-MgO substrates. Physica C 235-240:627-628

    Article  Google Scholar 

  21. Isaure M.-P., Laboudigue A., Manceau A., Sarret G., Tiffreau C., Trocellier P., Lamble G., Hazemann J.-L., Chateigner D. (2002) Quantitative Zn speciation in a contaminated dredgeg sediment by μ-PIXE, μ-EXAFS spectroscopy and principal component analysis. Geochimica et Cosmochimica Acta 66:1549-1567

    Article  CAS  Google Scholar 

  22. Chateigner D., Hedegaard C., Wenk H.-R. (1996) Texture analysis of a gastropod shell:Cypraea testudinaria. In Z. Liang, L. Zuo, Y. Chu (eds.) 11th International Conferenceon Textures of Materials. Vol. 2. Int. Academic Publishers, pp. 1221-1226

    Google Scholar 

  23. Bunge H.J., Esling C. (eds) (1982) Quantitative Texture Analysis. DGM, Germany

    Google Scholar 

  24. Bunge H.J. (1982) Texture Analysis in Materials Science. P.R. Morris Trans., Butter-worths, London

    Google Scholar 

  25. Matthies S. (1979) Reproducibility of the orientation distribution function of texturesamples from pole figures (ghost phenomena). Physica Status Solidi B 92:K135-K138

    Article  Google Scholar 

  26. Ruer D. (1976) Méthode vectorielle d'analyse de la texture. PhD thesis, Université deMetz, France

    Google Scholar 

  27. Vadon A. (1981) Généralisation et optimisation de la méthode vectorielle d’analyse dela texture. PhD thesis, Université de Metz, France

    Google Scholar 

  28. Schaeben H. (1988) Entropy optimization in quantitative texture analysis. J. Appl. Phys.64:2236-2237

    Google Scholar 

  29. Helming K. (1998) Texture approximations by model components. Materials Structure5:3-9

    Google Scholar 

  30. Pawlik K. (1993) Application of the ADC method for ODF approximation in cases oflow crystal and sample symmetries. Mater. Sci. Forum 133-136:151-156

    Article  Google Scholar 

  31. Williams R.O. (1968) Analytical methods for representing complex textures by biaxialpole figures. J. Appl. Phys. 39:4329-4335

    Article  Google Scholar 

  32. Imhof J. (1982) The resolution of orientation space with reference to pole figure resolu-tion. Textures and Microstructures 4:189-200

    Article  Google Scholar 

  33. Matthies S., Vinel G.W. (1982) On the reproduction of the orientation distribution func-tion of texturized samples from reduced pole figures using the conception of a condi-tional ghost correction. Physica Status Solidi B 112:K111-K114

    Article  Google Scholar 

  34. Schaeben H. (1991) Determination of complete ODF using the maximum entropymethod. In Bunge H.J., Esling C. (eds) Advances and applications of quantitative tex-ture analysis. DGM, Oberursel, Germany, pp109-118

    Google Scholar 

  35. Cont L., Chateigner D., Lutterotti L., Ricote J., Calzada M.L., Mendiola J. (2002)Combined X-ray texture-structure-microstructure analysis applied to ferroelectric ultra-structures: a case study on Pb0.76Ca0.24TiO3. Ferroelectrics 267:323-328

    Article  CAS  Google Scholar 

  36. Morales M., Chateigner D., Lutterotti L., Ricote J. (2002) X-ray combined QTA using aCPS applied to a ferroelectric ultrastructure. Mater. Sci. Forum 408-412:1055-1060

    Article  Google Scholar 

  37. Lutterotti L., Chateigner D., Ferrari S., Ricote J. (2004) Texture, residual stress andstructural analysis of thin films using a combined X-ray analysis. Thin Solid Films450:34-41

    Article  CAS  Google Scholar 

  38. Ricote J., Chateigner D. (2004) Quantitative microstructural and texture characterizationby X-ray diffraction of polycrystalline ferroelectric thin films. J. Appl. Cryst. 37:91-95

    Article  CAS  Google Scholar 

  39. Ricote J., Chateigner D., Morales M., Calzada M.L., Wiemer C. (2004) Application ofthe X-ray combined analysis to the study of lead titanate based ferroelectric thin films.Thin Solid Films 450:128-133

    Google Scholar 

  40. Chateigner D. (2005) Reliability criteria in Quantitative Texture Analysis with Experi-mental and Simulated Orientation Distributions. J. Appl. Cryst. 38:603-611

    Article  CAS  Google Scholar 

  41. Chateigner D. (2002) POFINT: a MS-DOS program for Pole Figure Interpretation.http://www.ecole.ensicaen.fr/~chateign/qta/pofint/

  42. Wenk H.R., Matthies S., Donovan J., Chateigner D. (1998) BEARTEX: a Windows-based program system for quantitative texture analysis. J. Appl. Cryst. 31:262-269

    Article  CAS  Google Scholar 

  43. Lutterotti L., Matthies S., Wenk H.-R. (1999). MAUD (Material Analysis Using Dif-fraction): a user friendly Java program for Rietveld texture analysis and more. National Research Council of Canada, Ottawa 1999, 1599-1604. http://www.ing.unitn.it/~luttero/maud/

  44. Matthies S., Humbert M. (1995) The combination of thermal analysis and time-resolvedX-ray techniques: a powerful method for materials characterization. J. Appl. Cryst.28:31-42

    Google Scholar 

  45. Chateigner D. (ed) (2004) Combined analysis: structure-texture-microstructure-phase-stresses-reflectivity analysis by x-ray and neutron scattering. To appear ISTE.http://www.ecole.ensicaen.fr/~chateign/texture/combined.pdf

  46. Ricote J., Chateigner D., Algueró M. (2005) Intrinsic effective elastic tensor of ferro-electric polycrystalline lead titanate based thin films with fiber-type texture.Thin SolidFilms 491:137-142

    Google Scholar 

  47. Chateigner D., Lutterotti L., Hansen T. (1998) Quantitative phase and texture analysison ceramics-matrix composites using Rietveld texture analysis. ILL Highlights 1997 28-29

    Google Scholar 

  48. Lutterotti L., Matthies S., Chateigner D., Ferrari S., Ricote J. (2002) Rietveld textureand stress analysis of thin films by X-ray diffraction. Mater. Sci. Forum 408-412:1603-1608

    Article  Google Scholar 

  49. Ricote J., Poyato R., Algueró M., Pardo L., Calzada M.L., Chateigner D. (2003) Texturedevelopment in modified lead titanate thin films obtained by chemical solution deposi-tion on silicon-based substrates. J. Am. Ceram. Soc. 86:1571-1577

    Article  CAS  Google Scholar 

  50. Ricote J., Chateigner D. (1999) Quantitative texture analysis applied to the study ofpreferential orientations in ferroelectric thin films. Bol. Soc. Esp. Cerám. Vidrio.38:587-591

    Google Scholar 

  51. Ricote J., Chateigner D., Pardo L., Algueró M., Mendiola J., Calzada M.L. (2000)Quantitative analysis of preferential orientation components of ferroelectric thin films.Ferroelectrics 241:167-174

    Google Scholar 

  52. Swanson T (1953). Natl. Bur. Stand. (U.S.), Circ. 539, I, 31. (JCPDS file 04-0802)

    Google Scholar 

  53. Mendiola J., Jiménez B., Alemany C., Pardo L.,. Del Olmo L. (1989) Influence of cal-cium on the ferroelectricity of modified lead titanate ceramics. Ferroelectrics 94:183-188

    Article  CAS  Google Scholar 

  54. Foster C.M., Li Z., Bucckett M., Miller D., Baldo P.M., Rhen L.E. Bai G.R., Guo D.,You H., Merkle K.L. (1995) Substrate effects on the structure of epitaxial PbTiO3 filmsprepared on MgO, LaAlO3 and SrTiO3 by metalorganic chemical-vapor deposition. J.Appl. Phys. 78:2607-2622

    Article  CAS  Google Scholar 

  55. Ricote J., Chateigner D., Calzada M.L., Mendiola J. (2002) Preferential orientation offerroelectric calcium modified lead titanate thin films grown on various substrates. Bol.Soc. Esp. Cerám. Vidrio 41:80-84

    CAS  Google Scholar 

  56. Guilmeau E., Funahashi R., Mikami M., Chong K., Chateigner D. (2004) Thermoelec-tric properties-texture relationship in highly oriented Ca3Co4O9 composites. Appl. Phys.Lett. 85 :1490-1492

    Article  CAS  Google Scholar 

  57. Foster C.M., Li S., Buckett M., Miller D., Baldo P.M., Rhen L.E., Bai G.R., Guo D.,You H., Merkle K.L. (1995) Substrate effects on the structure of epitaxial PbTiO3 thinfilms prepared on MgO, LaAlO3, and SrTiO3 by metalorganic chemical-vapour deposi-tion. J. Appl. Phys. 78:2607-2622

    Article  CAS  Google Scholar 

  58. Hsu W.Y., Raj R. (1995) X-ray characterization of the domain structure of epitaxial leadtitanate thin films on (001) strontium titanate. Appl. Phys. Lett. 67:792-794

    Article  CAS  Google Scholar 

  59. Foster C.M., Pompe W., Daykin A.C., Speck J.S. (1995) Relative coherency strain andphase transformation history in epitaxial ferroelectric thin films. J. Appl. Phys. 79:1405-1415

    Article  Google Scholar 

  60. Speck J.S., Daykin A.C., Seifert A. (1995) Domain configurations due to multiple misfitrelaxation mechanisms in epitaxial ferroelectric thin films. III. Interfacial defects anddomain misorientations. J. Appl. Phys. 78:1696-1706

    CAS  Google Scholar 

  61. Leclerc G., Poullain G., Bouregba R., Chateigner D. (2008) Influence of the substrate onferroelectric properties of <111> oriented Pb(Zr0.6T0.4)O3 thin films. Appl. Surf. Sci.255:4293

    Google Scholar 

  62. Vilquin B., Le Rhun G., Bouregba R., Poullain G., Murray H. (2002) Effect of in situ Ptbottom electrode deposition and of Pt top electrode preparation on PZT thin films prop-erties. Appl. Surf. Sci. 195:63-73

    Article  CAS  Google Scholar 

  63. Leclerc G., Domenges B., Poullain G., Bouregba R. (2006) Elaboration of (111)-oriented La-doped PZT thin films on platinized silicon substrates. Appl. Surf. Sci.253:1143-1149

    Google Scholar 

  64. Huang Z., Todd M.A., Watton R., Whatmore R.W. (1998) Sputtered lead scandiumtantalite thin films: a microstructural study. J. Mater. Sci. 33:363-370

    Article  CAS  Google Scholar 

  65. Bornand V., Chateigner D., Papet P., Philippot E. (1997). Piezoelectric thin films ob-tained by pyrosol process. Ann. Chim. Sci. Mat. 22: 683-686

    CAS  Google Scholar 

  66. Bornand V., Huet I., Chateigner D., Papet Ph. (2002) Oriented Growth of LiNbO3 ThinFilms for SAW properties. Mater. Sci. Forum 408-412:1573-1578

    Article  Google Scholar 

  67. Smith D.L. (1995) Thin film deposition principles and practice. McGraw Hill, NewYork, pp. 327-380

    Google Scholar 

  68. Fork D.K., Armani-Leplingard F., Kingston J.J., Anderson G.B. (1985) Thin Film Epi-taxial. Oxide Optical Waveguides. Mater. Res. Symp. Proc. 392:189-200

    Google Scholar 

  69. Derouin T.A., Lakeman C.D.E., Wu X.H., Speck J.S., Lange F.F. (1997) Effect of lat-tice mismatch on the epitaxy of sol-gel LiNbO3 thin films. J. Mater. Res. 12:1391-1400

    Article  CAS  Google Scholar 

  70. Guo J., Ellis D.E., Lam D.J. (1992) Electronic structure and energetics of sapphire(0001) and (1-102) surfaces. Phys. Rev. B 45:13647-13656

    Article  CAS  Google Scholar 

  71. Ricote J., Morales M., Calzada M.L. (2002) Texture analysis of ferroelectric thin filmson platinized Si-based substrates with a TiO2 layer. Mater. Sci. Forum 408-412:1543-1548

    Article  Google Scholar 

  72. S.Y. Chen and I.W. Chen (1994) Temperature-time texture transition of Pb(Zr1-xTix)O3thin films: I. Role of Pb-rich intermediate phases. J. Am. Ceram. Soc. 77:2332-2336

    CAS  Google Scholar 

  73. Z. Huang, Q. Zhang and R.W. Whatmore (1999) Structural development in the earlystages of annealing of sol-gel prepared lead zirconate titanate thin films. J. Appl. Phys.86:1662-69

    Google Scholar 

  74. Y. Liu and P.P. Phulé (1996) Nucleation- or growth-controlled orientation developmentin chemically derived ferroelectric lead zirconate titanate (Pb(ZrxTi1-x)O3, x=0.4) thinfilms. J. Am. Ceram. Soc. 79:495-98

    Article  CAS  Google Scholar 

  75. Muralt P., Maeder T., Sagalowicz L., Hiboux S., Scalese S., Naumovic D., Agostino R.G., Xanthopoulos N., Mathieu H.J., Patthey L., Bullock E.L. (1998). Texture controlof PbTiO3 and Pb(Zr,Ti)O3 thin films with TiO2 seeding. J. Appl. Phys. 83:3835-3841

    Article  CAS  Google Scholar 

  76. Cattan E., Velu G., Jaber B., Remiens D., Thierry B. (1997) Structure control of Pb(Zr,Ti)O3 films using PbTiO3 buffer layers produced by magnetron sputtering. Appl. Phys. Lett. 70:1718-1720

    Article  CAS  Google Scholar 

  77. Calzada M.L., Poyato R., García López J., Respaldiza M.A., Ricote J., Pardo L. (2001)Effect of the substrate heterostructure on the texture of lanthanum modified lead titanatethin films. J. Eur. Ceram. Soc. 21:1529-1533

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chateigner .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Chateigner, D., Ricote, J. (2011). Quantitative Texture Analysis of Polycrystalline Ferroelectrics. In: Multifunctional Polycrystalline Ferroelectric Materials. Springer Series in Materials Science, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2875-4_8

Download citation

Publish with us

Policies and ethics