Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 140))

Abstract

By their ferroelectric nature, ferro-piezoelectric ceramics have a non-linear behaviour. This nature is reinforced by their notably complex grain and domain structure, which leads to a less linear behaviour than is expected for a single crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassiri-Gharb N, Fujii I, Hong E, Trolier-McKinstry S, Taylor D V, Damjanovic D (2007) Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram 19, pp 49-67

    Article  Google Scholar 

  2. Cross L E (1995) Ferroelectric materials for electromechanical transducer applications. Jpn. J. Appl. Phys. 34, pp 2525-2532

    Article  CAS  Google Scholar 

  3. Albareda A, Pérez R, Villar J L, Minguella E, Gorri J A (1997) Intermodulation measurement of nonlinearities in piezoceramic resonators. Rev. Sci. Instrum. 68 no 8, pp 3143 - 3149

    Google Scholar 

  4. Ikeda T (1990) Fundamentals of Piezoelectricity. Oxford Univ. Pr., Oxford

    Google Scholar 

  5. Maiti T, Guo R, Bhalla A S (2007) Enhanced electric field tunable dielectric properties of BaZrxTi1−xO3 relaxor ferroelectrics. Applied Phys. Letters 90, 182901

    Article  Google Scholar 

  6. Albareda A, Casals JA, Pérez R, Montero de Espinosa F (2002) Nonlinear measurements of high-power 1-3 piezo-air-transducers with burst excitation.

    Google Scholar 

  7. Ferroelectrics 273, pp 47-52

    Google Scholar 

  8. Pérez R, Albareda A, García JE, Tiana J, Ringgaard E, Wolny WW (2004) Extrinsic contribution to the non-linearity in a PZT disc. J. Phys. D: Appl. Phys. 37, pp 2648- 2654

    Article  Google Scholar 

  9. Albareda A, Pérez R, García J E, Ochoa D A, Gomis V, Eiras J A (2007) Influence of donor and acceptor substitutions on the extrinsic behaviour of PZT piezoceramics. J. Eur. Ceram. Soc. 27, pp 4025-4028

    Article  CAS  Google Scholar 

  10. García J E, Pérez R, Albareda A, Eiras J A (2007) Non-linear dielectric and

    Google Scholar 

  11. piezoelectric response in undoped and Nb5+ or Fe3+ doped PZT ceramic system. J. Eur. Ceram. Soc. 27, pp 4029-4032

    Google Scholar 

  12. García J E, Pérez R, Albareda A (2005) Contribution of reversible processes to the non- linear dielectric response in hard lead zirconate titanate ceramics. J. Phys: Condens. Matter 17, pp 7143-7150

    Article  Google Scholar 

  13. Zhang Q M, Wang H, Kim N, Cross L E (1994) Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 75, pp 454-459

    Article  CAS  Google Scholar 

  14. Lente M H, Picinin A, Rino J P, Eiras J A (2004) 90° domain wall relaxation and frequency dependence of the coercive field in the ferroelectric switching process. J. Appl. Phys. 95, pp 2646-2653

    Article  CAS  Google Scholar 

  15. Lupascu D C (2004) Fatigue of ferroelectric ceramics and related issues. Hull R, Osgood R M, Parisi J, Warlimont H (eds), Springer Series in Materials Science no 61, Berlin Heidelberg, Germany

    Google Scholar 

  16. Uchino K (1999) Recent trend of piezoelectric actuator developments. Proc. 1999 Int. Symp. Micromechatronics & Human Science, IEEE-MHS, pp 3-9

    Google Scholar 

  17. Robert G, Damjanovic D, Setter N (2001) Piezoelectric hysteresis analysis and loss separation. J. Appl. Phys. 90, pp 4668-4675

    Article  CAS  Google Scholar 

  18. Albareda A, Kayombo J H, Gorri J A (2001) Nonlinear direct and indirect third harmonic generation in piezoelectric resonators by the intermodulation method. Rev. Sci. Instrum. 72 no 6, pp 2742 - 2749

    Google Scholar 

  19. Hall D A, Stevenson P J (1996) Field induced destabilization of hard PZT ceramics. Ferroelectrics 223, pp 309-318

    Google Scholar 

  20. Stevenson P J, Hall D A (1999) The effect of grain size on the high field dielectric properties of hard PZT ceramics. Ferroelectrics 228, pp 139-58

    Article  Google Scholar 

  21. Pérez R, García J E, Albareda A (2002) Relation between nonlinear dielectric behaviour and alterations of domain structure in a piezoelectric ceramic. Ferroelectrics 273, pp 205 - 210

    Google Scholar 

  22. Demartin M, Damjanovic D (1996) Dependence of the direct piezoelectric effect in coarse and fine grain barium titanate ceramics on dynamic and static pressure. Appl. Phys. Lett. 68 no 21, pp 3046-3048

    Google Scholar 

  23. Pérez R, Albareda A, Pérez E, García J E, Tiana J, Gorri J A (2006) No linealidad del efecto piezoeléctrico directo d33 en cerámicas PZT. Bol. Soc. Esp. Ceram. V. 45 no 3. pp 197-201

    Google Scholar 

  24. Taylor D V, Damjanovic D (1997) Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at sub-switching fields. J. Appl. Phys. 82, pp 1973-1975

    Article  CAS  Google Scholar 

  25. García J E, Pérez R, Albareda A (2001) High electric field measurement of dielectric constant and losses of ferroelectric ceramics. J. Phys. D: Appl. Phys. 34, pp 3279 - 3284

    Article  Google Scholar 

  26. Eitel R E, Shrout T R, Randall C A (2006) Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics. J. Appl. Phys. 99, 124110

    Article  Google Scholar 

  27. Bassiri-Gharb N, Trolier-McKinstry S, Damjanovic D (2006) Piezoelectric nonlinearity in ferroelectric thin films. J. Appl. Phys. 100, 044107

    Article  Google Scholar 

  28. European Standard (2002) Piezoelectric properties of ceramic materials and components—Part 3: Methods of measurement—High power. CENELEC, 50324-3

    Google Scholar 

  29. Hall D A (2001) Nonlinearity in piezoelectric ceramics. J. Mat. Science 36, pp 4575- 4601

    Article  CAS  Google Scholar 

  30. Andersen B, Ringgaard E, Bove T, Albareda A, Pérez R (2000) Performance of Piezoelectric Ceramic Multilayer Components Based on Hard and Soft PZT. Proc. Actuators’00, pp 419-422

    Google Scholar 

  31. García J E, Pérez R, Albareda A, Eiras J A (2007) Extrinsic response anisotropy in ferroelectric perovskite polycrystals. Solid State Commun. 144, pp 23-26

    Article  Google Scholar 

  32. Damjanovic D (1997) Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82 no 4, pp 1788-1797

    Google Scholar 

  33. Davis M, Damjanovic D, Setter N (2004) Pyroelectric properties of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 and (1−x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystals measured using a dynamic method. J. Appl. Phys. 96 no 5, pp 2811-2815

    Google Scholar 

  34. Planat M, Hauden D (1985) Nonlinear properties of bulk and surface acoustic waves in piezoelecric crystals. In: Taylor GW, Gagnepain JJ, Meeker TR, Nakamura T, Shuvalov LA (eds) Piezoelectricity. Gordon and Breach, New York, pp 277-296

    Google Scholar 

  35. Beige H, Shmidt G (1985) Electromechanical resonances for investigating linear and nonlinear properties of dielectrics. In: Taylor GW, Gagnepain JJ, Meeker TR, Nakamura T, Shuvalov LA (eds) Piezoelectricity. Gordon and Breach, New York, pp 93-103

    Google Scholar 

  36. Holland R, Eernisse EP (1969) Accurate measurement of coefficients in a ferroelectric ceramic. IEEE Trans. on Sonics and Ultrason. SU-16 no. 4, pp 173-181

    Google Scholar 

  37. Priya S, Viehland D, Vazquez Carazo A, Ryu J, Uchino K (2001) High-power resonant measurements of piezoelectric materials: importance of elastic nonlinearities. J. Appl. Phys, vol. 90 no. 3, pp 1469-1479

    Article  CAS  Google Scholar 

  38. Guyomar D, Aurelle N, Richard C, Gonnard P, Eyraud L (1994) Non Linearities in Langevin Transducers. Proc IEEE Int.Ultrasonics Symposium, Cannes, vol 2, pp 925- 928

    Google Scholar 

  39. Pérez R, Albareda A (1996) Analysis of non-linear effects in a piezoelectric resonator. J. Acoust. Soc. Amer. 100 no. 6, pp 3561-3570

    Google Scholar 

  40. Albareda A, Gonnard P, Perrin V, Briot R, Guyomar D (2000) Characterization of the Mechanical Nonlinear Behaviour of Piezoelectric Ceramics. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 47 no. 4, pp 844-853

    Google Scholar 

  41. Blackburn JF, Cain M (2006) Nonlinear piezoelectric resonance: A theoretically rigorous approach to constant I-V measurements. J. Appl. Phys. 100, 114101

    Article  Google Scholar 

  42. Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Tuller HL (eds), Kluwer Acad. Pub., Norwell MA

    Google Scholar 

  43. Hirose S, Takahashi S, Uchino K, Aoyagi M, Tomikawa Y (1995) Measuring methods for high-power characteristics of piezoelectric materials. Proc. Mater. for Smart Systems, Mater. Res. Soc. 360, pp 15-20

    Google Scholar 

  44. Albareda A, Pérez R, Casals JA, García JE, Ochoa DA (2007) Optimization of elastic nonlinear behaviour measurements of ceramic piezoelectric resonators with burst excitation. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 54 no 10, pp 2175-2188

    Google Scholar 

  45. Albareda A, Casals JA, Pérez R, Montero de Espinosa F (2001) Nonlinear measurements of piezocomposite transducers with burst excitation. Proc. 12th-IEEE ISAF’00, pp 979-982

    Google Scholar 

  46. Casals JA, Albareda A, Pérez R, García JE, Minguella E, Montero de Espinosa F (2003) Non-linear Characterization with Burst Excitation of 1-3 Piezocomposite Transducers. Ultrasonics 41, no 4, pp 307-311

    Article  CAS  Google Scholar 

  47. Takahashi S, Sasaki Y, Umeda M, Nakamura K, Ueha S (2001) Nonlinear Behaviour in Piezoelectric Ceramic Transducers. Proc. 12th IEEE Int. Symp. Appl. Ferroelect., pp 11- 16

    Google Scholar 

  48. Umeda M, Nakamura K, Ueha S (1998) The measurement of high power characteristics for a piezoelectric transducer based on the electrical transient response. Jpn. J. Appl. Phys. 37, pp 5322-5325

    Article  CAS  Google Scholar 

  49. Blackburn JF, Cain M (2007) Non-linear piezoelectric resonance analysis using burst mode: a rigorous solution. J. Phys. D: Appl. Phys. 40, pp 227-233

    Article  CAS  Google Scholar 

  50. Albareda A, Pérez R, García JE, Ochoa DA (2007) Non-linear elastic phenomena near the radial antiresonance frequency in piezoceramic discs. J. of Electroceramics 19, pp 427-431

    Article  Google Scholar 

  51. Hall D A (1999) Rayleigh behaviour and the threshold field in ferroelectric ceramics. Ferroelectrics 223, pp 319-328

    Article  CAS  Google Scholar 

  52. Damjanovic D, Demartin M (1997) Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. J. Phys.: Condens. Matter. 9, pp 4943-4953

    Google Scholar 

  53. Pérez R, García J E, Albareda A (2001) Nonlinear Dielectric Behaviour of Piezoelectric Ceramics. Proc. IEEE-ISAF’00, pp 443-446

    Google Scholar 

  54. Damjanovic D, Demartin M (1996) The Rayleigh law in piezoelectric ceramics. J. Phys. D : Appl. Phys. 29, pp 2057-2060

    Article  CAS  Google Scholar 

  55. García J E, Pérez R, Albareda A (2002) Manifestación de la estructura de dominios en el comportamiento dieléctrico no lineal de una cerámica piezoeléctrica. Bol. Soc. Esp. Ceram. V. 41 no 1, pp 75-79

    Google Scholar 

  56. Robert G, Damjanovic D, Setter N (2000) Preisach modelling of ferroelectric pinched loops , Appl. Phys. Lett. Vol. 77, pp 4413-4415

    Article  CAS  Google Scholar 

  57. Robert G, Damjanovic D, Setter N (2001) Preisach distribution function approach to piezoelectric nonlinearity and hysteresis. J. Appl. Phys. 90, pp 2459-2464

    Article  CAS  Google Scholar 

  58. Turik S A, Reznitchenko L A, Rybjanets A N, Dudkina S I, Turik A V, Yesis A A (2005) Preisach model and simulation of the converse piezoelectric coefficient in ferroelectric ceramics. J. Appl. Phys. 97, 064102

    Article  Google Scholar 

  59. Cross L E (2000) Domain and phase change contributions to response in high strain piezoelectric actuators. AIP Conf. Proc. 535, pp 1-15

    Article  CAS  Google Scholar 

  60. García J E, Gomis V, Pérez R, Albareda A, Eiras J A (2007) Unexpected dielectric response in lead zirconate titanate ceramics: the role of ferroelectric domain wall pinning effects. Appl. Phys. Letter 91, 042902

    Article  Google Scholar 

  61. Trolier-McKinstry S, Bassiri-Gharb N, Damjanovic D (2006) Piezoelectric nonlinearity due to motion of 180° domain walls in ferroelectric materials at subcoercive fields: A dynamic poling mode. Appl. Phys. Lett. 88, 202901

    Article  Google Scholar 

  62. Fousek J, Janovec V (1969) Orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40, pp 135-142

    Article  CAS  Google Scholar 

  63. Mueller V, Zhang Q M (1998) Nonlinearity and scaling behaviour in donor-doped lead zirconate titanate piezoceramic. Appl. Phys. Lett. 72, pp 2692-2694

    Article  CAS  Google Scholar 

  64. Pérez R, García J E, Albareda A, Ochoa, D A (2007) Extrinsic effects in twinned ferroelectric polycrystals. J. Appl. Phys. 102, 044117

    Article  Google Scholar 

  65. Chaplya P M, Carman G P (2001) Dielectric and piezoelectric response of lead zirconate-lead titanate at high electric and mechanical loads in terms of non-180° domain wall motion. J. Appl. Phys. 90, pp 5278-5286

    Article  CAS  Google Scholar 

  66. Arlt G, Hennings D, With G (1985) Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, pp 1619-1625

    Article  CAS  Google Scholar 

  67. Arlt G, Sasko P (1980) Domain configuration and equilibrium size of domains in BaTiO3 ceramics J. Appl. Phys. 51, pp 4956-4960

    Article  CAS  Google Scholar 

  68. Pérez R, Albareda A, García J E, Casals J A (2004) Relación entre los comportamientos no lineales dieléctrico y mecánico en cerámicas piezoeléctricas de PZT. Bol. Soc. Esp. Ceram. V. 43 no 3, pp 658-662

    Google Scholar 

  69. Noheda B, Cox D E, Shirane G, Gonzalo J A, Cross L E, Park S-E (1999) A monoclinic

    Google Scholar 

  70. ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Appl. Phys. Lett. 74, pp 2059- 2061

    Google Scholar 

  71. Noheda B, Gonzalo J A, Cross L E, Guo R, Park S-E, Cox D E, Shirane G (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61, pp 8687-8695

    Google Scholar 

  72. Damjanovic D, Demartin M, Duran Martin P, Voisard C, Setter N (2001) Maxwell- Wagner piezoelectric relaxation in ferroelectric heterostructures. J. Appl. Phys. 90, pp 5708-5712

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfons Albareda .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Albareda, A., Pérez, R. (2011). Non-Linear Behaviour of Piezoelectric Ceramics. In: Multifunctional Polycrystalline Ferroelectric Materials. Springer Series in Materials Science, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2875-4_15

Download citation

Publish with us

Policies and ethics