Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 140))

Abstract

Today, many dielectric materials are used in applications for their piezoelectric properties. Among all piezoelectric materials, ferroelectrics built an important subgroup. Ferroelectricity in such materials is a typical phenomenon resulting from the spontaneous existence of permanent electric dipole moments in their structure that can be reversed by application of an electric field. From the structural point of view, ferroelectricity is a structural phase transition from paraelectric (also called parent or higher symmetry) to ferroelectric (lower symmetry) phase. Crystallographic groups are in group-subgroup relationship for para- and ferroelectric phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.Fousek, V.Janovec: The orientation of domain walls in twinned ferroelectric crystals, J.Appl.Phys. 40, 1 (1969) 135-142.

    Article  CAS  Google Scholar 

  2. J.Sapriel: Domain-wall orientations in ferroelastics, Phys.Rev. B 12, 11 (1975) 5128- 5140.

    Article  CAS  Google Scholar 

  3. J.Erhart: Domain wall orientations in ferroelastics and ferroelectrics, Phase Transitions 77, 12 (2004) 989-1074.

    Article  CAS  Google Scholar 

  4. K.G.Desmukh, S.G.Ingle: Interferometric studies of domain structures in potassium niobate single crystals, J.Phys. D: Appl.Phys. 4 (1971) 124-132.

    Article  Google Scholar 

  5. L.M.Eng, M.Abplanalp, P.Günter: Ferroelectric domain switching in tri-glycine sulphate and barium-titanate bulk single crystals by scanning force microscopy, Appl.Phys. A 66 (1998) S679-S683.

    Article  CAS  Google Scholar 

  6. J.Fuksa, V.Janovec: Macroscopic symmetries and domain configurations of engineered domain structures, J.Phys.: Condens. Matter 14 (2002) 3795-3812.

    Google Scholar 

  7. E.Wiesendanger: Domain structures in orthorhombic KNbO3 and characterisation of single domain crystals, Czech.J.Phys. B 23 (1973) 91-99.

    Google Scholar 

  8. Li Lian, T.C.Chong, H.Kumagai, M.Hirano, Lu Taijing, S.C.Ng: Temperature evolution of domains in potassium niobate single crystals, J. Appl. Phys. 80, 1 (1996) 376-381.

    Google Scholar 

  9. J.Fousek, D.B.Litvin, L.E.Cross: Domain geometry engineering and domain average engineering of ferroics, J.Phys.: Condens. Matter 13 (2001) L33-L38.

    Google Scholar 

  10. V.Ya.Shur, E.L.Rumyantsev, E.V.Nikolaeva, E.I.Shishkin, R.G.Batchko, G.D.Miller, M.M.Fejer, R.L.Byer: Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications, Ferroelectrics 236 (2000) 129-144.

    Google Scholar 

  11. J.Hirohashi, K.Yamada, H.Kamiyo, S.Shichijyo: Artificial Fabrication of 60o Domain Structures in KNbO3 Single Crystals, J.Korean Phys.Soc. 42 (2003) S1248-S1251.

    CAS  Google Scholar 

  12. J. Kuwata, K. Uchino, S. Nomura: Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals, Jpn.J.Appl.Phys. 21, 9 (1982) 1298- 1302.

    Google Scholar 

  13. M.Abplanalp, D.Barošová, P.Bridenbaugh, J.Erhart, J.Fousek, P.Günter, J.Nosek, M.Šulc: Domain structures in PZN-8%PT and PMN-29%PT single crystals studied by scanning force microscopy, J.Appl.Phys. 91, 6 (2002) 3797-3805.

    Article  CAS  Google Scholar 

  14. R.Zhang, B.Jiang, W.Cao: Single-domain properties of 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals under electric field bias, Appl.Phys.Lett. 82, 5 (2003) 787-789.

    Google Scholar 

  15. Y.Yamashita, Y.Hosono, K.Harada, N.Ichinose: Effect of molecular mass B-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials, Jpn.J.Appl.Phys. 39, Part 1, 9B (2000) 5593-5596.

    Google Scholar 

  16. R.E.Eitel, C.A.Randall, T.R.Shrout, P.W.Rehrig, W.Hackenberger, Seung-Eek Park: New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3-PbTiO3 Ceramics, Jpn. J. Appl. Phys. 40, Part 1, 10 (2001) 5999-6002.

    Google Scholar 

  17. Y.Yamashita, Y.Hosono, K.Harada, N.Yasuda: Present and Future of Piezoelectric Single Crystals and the Importance of B-Site Cations for High Piezoelectric Response, IEEE Trans. UFFC 49, 2 (2002) 184-192.

    Google Scholar 

  18. S.Zhang, C.A.Randall, T.R.Shrout: Recent Developments in High Curie Temperature Perovskite Single Crystals, IEEE Trans. UFFC 52, 4 (2005) 564-569.

    Google Scholar 

  19. S.Wada, S.-E.Park, L.E.Cross, T.R.Shrout: Engineered domain configuration in rhombohedral PZN-PT single crystals and their ferroelectric related properties, Ferroelectrics 221, 1-4 (1999) 147-155.

    Article  CAS  Google Scholar 

  20. Z.-G.Ye, M.Dong: Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, J.Appl.Phys. 87, 5 (2000) 2312-2319.

    Article  CAS  Google Scholar 

  21. S.-E. Park,T. R. Shrout: Ultrahigh strain and piezoelectric behaviour in relaxor-based ferroelectric single crystals, J.Appl.Phys. 82, 4 (1997) 1804-1811.

    Article  CAS  Google Scholar 

  22. K.Takemura, M.Ozgul, V.Bornand, S.Trolier-McKinstry, C.A.Randall: Fatigue anisotropy in single crystal Pb(Zn1/3Nb2/3)O3-PbTiO3, J.Appl.Phys. 88, 12 (2000) 7272- 7277.

    Article  CAS  Google Scholar 

  23. S.Wada, S.Suzuki, T.Noma, T.Suzuki, M.Osada, M.Kakihana, S.E.Park, L.E.Cross, T.R.Shrout: Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations, Jpn.J.Appl.Phys. 38, Part 1, 9B (1999) 5505-5511.

    Google Scholar 

  24. S. Wada, A. Seike, T.Tsurumi: Poling Treatment and Piezoelectric Properties of Potassium Niobate Ferroelectric Single Crystals, Jpn.J.Appl. Phys. 40, Part 1, 9B (2001) 5690-5697.

    Google Scholar 

  25. K.Nakamura, T.Tokiwa, Y.Kawamura: Domain structures in KNbO3 crystals and their piezoelectric properties, J.Appl.Phys. 91, 11 (2002) 9272-9276.

    Article  CAS  Google Scholar 

  26. R.E.Newnham, L.E.Cross: Secondary ferroics and domain-divided piezoelectrics, Ferroelectrics 10 (1976) 269-276.

    Article  CAS  Google Scholar 

  27. V.D.Kugel, G.Rosenman, D. Shur: Piezoelectric properties of bidomain LiNbO3 crystals, J. Appl. Phys. 78, 9 (1995) 5592-5596.

    Article  CAS  Google Scholar 

  28. Y.-Y.Zhu, N.-B.Ming: Ultrasonic excitation and propagation in an acoustic superlattice, J.Appl.Phys. 72, 3 (1992) 904-914.

    Article  CAS  Google Scholar 

  29. Y.-Y.Zhu, S.-N.Zhu, Y.-Q.Qin, N.-B.Ming: Further studies on ultrasonic excitation in an acoustic superlattice, J.Appl.Phys. 79, 5 (1996) 2221-2224.

    Article  CAS  Google Scholar 

  30. N.B.Ming, J.F.Hong, D.Feng: The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals, J.Mater.Sci. 17 (1982) 1663-1670.

    Article  CAS  Google Scholar 

  31. P.G.Schunemann, T.M.Pollak, Y.Yang, Y.-Y.Teng, C.Wong: Effects of feed material and annealing atmosphere on the properties of photorefractive barium titanate crystals, J. Opt. Soc. Am. B 5, 8 (1988) 1702-1710.

    Article  CAS  Google Scholar 

  32. S.Ajimura, K.Tomomatsu, O.Nakao, A.Kurosaka, H.Tominaga, O.Fukuda: Photorefractive effect of BaTiO3 single crystals grown in inert atmospheres, J. Opt. Soc. Am. B 9, 9 (1992) 1609-1613.

    Article  CAS  Google Scholar 

  33. M.M.Hopkins, A.Miller: Preparation of poled, twin-free crystals of ferroelectric bismuth titanate, Bi4Ti3O12, Ferroelectrics 1 (1970) 37-42.

    CAS  Google Scholar 

  34. S.Noge, T.Uno: Formation of Artificial Twinning Quartz Plate with x-axis Inversion Area by Laser Beam Irradiation, Jpn.J.Appl.Phys. 38, Part 1, 7A (1999) 4250-4253.

    Google Scholar 

  35. S.Noge, T.Uno: Twinning of a quartz plate at low temperature using a laser beam, Jpn.J.Appl.Phys. 39, Part 1, 5B (2000) 3056-3059.

    Google Scholar 

  36. G.Arlt, P.Sasko: Domain configuration and equilibrium size of domains in BaTiO3 ceramics, J.Appl.Phys. 51, 9 (1980) 4956-4960.

    Article  CAS  Google Scholar 

  37. Sang-Beom Kim, Doh-Yeon Kim: Stabilization and Memory of the Domain Structures in Barium Titanate Ceramics: Microstructural Observation, J. Am. Ceram. Soc. 83, 6 (2000) 1495-1498.

    Article  CAS  Google Scholar 

  38. S.Wada, K.Yako, H.Kakemoto, J.Erhart, T.Tsurumi: Enhanced piezoelectric property of BaTiO3 single crystals with the different domain sizes, Key Engineering Materials 269 (2004) 19-22.

    Article  CAS  Google Scholar 

  39. J.Erhart: Theoretical calculation of the temperature dependence for the material coefficients of the domain-engineered ferroelectric crystals, Ferroelectrics 292 (2003) 71-81.

    Article  CAS  Google Scholar 

  40. J.Erhart, S.Wada: Theoretical calculation of the resonant frequency temperature dependence for domain-engineered piezoelectric resonators, Materials Science and Engineering B 120 (2005) 175-180.

    Article  Google Scholar 

  41. M.J.Haun, E.Furman, S.J.Jang, H.A. McKinstry, L.E.Cross: Thermodynamic theory of PbTiO3, J.Appl.Phys. 62, 8 (1987) 3331-3338.

    Article  CAS  Google Scholar 

  42. A. Schaefer, H. Schmitt, A. Dörr: Elastic and piezoelectric coefficients of TSSG barium titanate single crystals, Ferroelectrics 69 (1986) 253-266.

    Article  CAS  Google Scholar 

  43. J.Erhart, W.Cao: Effective symmetry and physical properties of twinned perovskite ferroelectric single crystals, J. Mater. Res. 16, 2 (2001) 570-577.

    Article  CAS  Google Scholar 

  44. J. Erhart, L. Rusin, L.Seifert: Resonant frequency temperature coefficients for the piezoelectric resonators working in various vibration modes, Journal of Electroceramics 19 (2007) 403-406.

    Article  Google Scholar 

  45. IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics, IEEE Std. 179-1961 (R1971).

    Google Scholar 

  46. IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987

    Google Scholar 

  47. J.Erhart, M.Franclíková and L.Rusin: Piezoelectric resonators with engineered domain structures, Ferroelectrics 376, 1 (2008) 99-115.

    Article  CAS  Google Scholar 

  48. J.Zelenka: Piezoelectric resonators (Elsevier, Amsterdam 1986).

    Google Scholar 

  49. A.H.Meitzler, H.M.O’Bryan, Jr., H.F.Tiersten: Definition and measurement of radial mode coupling factors in piezoelectric ceramic materials with large variations in Poisson’s ratio, IEEE Trans. Sonics Ultrason. SU-20, 3 (1973) 233-239.

    Google Scholar 

  50. P.Půlpán, J.Erhart: Transformation ratio of “ring-dot” planar piezoelectric transformer, Sensors and Actuators A 140 (2007) 215-224.

    Article  Google Scholar 

  51. P.Půlpán, J.Erhart, O.Štípek: Modelling of piezoelectric transformers, Ferroelectrics 351 (2007) 204-215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Erhart, J. (2011). Domain Engineered Piezoelectric Resonators. In: Multifunctional Polycrystalline Ferroelectric Materials. Springer Series in Materials Science, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2875-4_14

Download citation

Publish with us

Policies and ethics