Skip to main content

Advances in Processing of Bulk Ferroelectric Materials

  • Chapter
Multifunctional Polycrystalline Ferroelectric Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 140))

Abstract

The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaffe B, Cook WR and and Jaffe H (1971) Piezoelectric Ceramics Academic Press, London and New York

    Google Scholar 

  2. Rabe KA, Dawber M, Lichtensteiger C, Ahn CH and Triscone JM (2007) Modern physics of ferroelectrics: Essential background Physics of Ferroelectrics: a Modern Perspective (Topics in Applied Physics), pp 1-30

    Google Scholar 

  3. Haertling GH (1999) Ferroelectric ceramics: History and technology, Journal of the American Ceramic Society 82: 797-818

    CAS  Google Scholar 

  4. Bhalla AS, Guo RY and Roy R (2000) The perovskite structure – a review of its role in ceramic science and technology. Materials Research Innovations 4: 3-26

    CAS  Google Scholar 

  5. Lee T and Aksay IA (2001) Hierarchical structure-ferroelectricity relationships of barium titanate particles. Crystal Growth & Design 1: 401-419

    CAS  Google Scholar 

  6. Lee S, Randall CA and Liu ZK (2007) Modified phase diagram for the barium oxidetitanium dioxide system for the ferroelectric barium titanate. Journal of the American Ceramic Society 90: 2589-2594

    CAS  Google Scholar 

  7. Markovic S, Mitric M, Cvjeticanin N and Uskokovic D (2006) Structural and dielectric properties of BaTi1-xSnxO3 ceramics In: Uskokovic DPMSKRDI (ed), pp 241-246

    Google Scholar 

  8. Jaffe B, Roth RS and Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics 25: 809

    CAS  Google Scholar 

  9. Kakegawa K, Mohri J, Takahashi T, Yamamura H and Shirasaki S (1977) Compositional fluctuation and properties of Pb(Zr,Ti)O3. Solid State Communications 24: 769-772

    CAS  Google Scholar 

  10. Cao WW and Cross LE (1993) Theoretical-model for the morphotropic phase-boundary in lead zirconate lead titanate solid-solution. Physical Review B 47: 4825-4830

    CAS  Google Scholar 

  11. Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE and Park SE (1999) A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Applied Physics Letters 74: 2059-2061

    CAS  Google Scholar 

  12. Cordero F, Craciun F and Galassi C (2007) Low-temperature phase transformations of PbZr1-xTixO3 in the morphotropic phase-boundary region. Physical Review Letters 98255701

    Google Scholar 

  13. Bokov AA and Ye ZG (2006) Recent progress in relaxor ferroelectrics with perovskite structure. Journal of Materials Science 41: 31-52

    CAS  Google Scholar 

  14. Shrout TR and Zhang SJ (2007) Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics 19: 111-124

    CAS  Google Scholar 

  15. Maeder MD, Damjanovic D and Setter N (2004) Lead free piezoelectric materials. Journal of Electroceramics 13: 385

    CAS  Google Scholar 

  16. Mehring M (2007) From molecules to bismuth oxide-based materials: Potential homoand heterometallic precursors and model compounds. Coordination Chemistry Reviews 251: 974-1006

    CAS  Google Scholar 

  17. Baettig P, Schelle CF, LeSar R, Waghmare UV and Spaldin NA (2005) Theoretical prediction of new high-performance lead-free piezoelectrics. Chemistry of Materials 17: 1376-1380

    CAS  Google Scholar 

  18. Takenaka T, Maruyama K and Sakata K (1991) (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 30: 2236-2239

    Google Scholar 

  19. Nagata H, Yoshida M, Makiuchi Y and Takenaka T (2003) Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 42: 7401-7403

    Google Scholar 

  20. Isupov VA (2006) Systematization of Aurivillius-type layered oxides. Inorganic Materials 42: 1094-1098

    CAS  Google Scholar 

  21. Shulman HS, Testorf M, Damjanovic D and Setter N (1996) Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. Journal of the American Ceramic Society 79: 3124-3128

    CAS  Google Scholar 

  22. Maeder MD, Damjanovic D, Voisard C and Setter N (2002) Piezoelectric properties of SrBi4Ti4O15 ferroelectric ceramics. Journal of Materials Research 17: 1376-1384

    CAS  Google Scholar 

  23. Wang CM and Wang JF (2008) Aurivillius phase potassium bismuth titanate: K0.5Bi4.5Ti4O15. Journal of the American Ceramic Society 91: 918-923

    CAS  Google Scholar 

  24. Sanson A and Whatmore RW (2005) Phase diagram of the Bi4Ti3O12-BaTiO3-(Na1/2Bi1/2)TiO3 system. Journal of the American Ceramic Society 88: 3147-3153

    CAS  Google Scholar 

  25. Jamieson P.B., Abrahams S.C. and Bernstein J.L. (1968) Ferroelectric tungsten bronze – type crystal structures. I. Barium Strontium Niobate Ba0.27 Sr0.75 Nb2O5.78. The Journal of Chemical Physics 48: 5048-5067

    CAS  Google Scholar 

  26. Venet M, Vendramini A, Garcia D, Eiras JA and Guerrero F (2006) Tailoring of the lead metaniobate ceramic processing. Journal of the American Ceramic Society 89: 2399-2404

    CAS  Google Scholar 

  27. Weller MT, Hughes RW, Rooke J, Knee CS and Reading J (2004) The pyrochlore family – a potential panacea for the frustrated perovskite chemist. Dalton Transactions: 3032-3041

    Google Scholar 

  28. Ang C and Yu Z (2004) Phase-transition temperature and character of Cd2Nb2O7. Physical Review B 70134103

    Google Scholar 

  29. Fischer M, Malcherek T, Bismayer U, Blaha P and Schwarz K (2008) Structure and stability of Cd2Nb2O7 and Cd2Ta2O7 explored by ab initio calculations. Physical Review B 78014108

    Google Scholar 

  30. Eerenstein W, Mathur ND and Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442: 759-765

    CAS  Google Scholar 

  31. Liu XH, Xu Z, Wei XY and Yao X (2008) Ferroelectric and Ferromagnetic Properties of 0.7BiFe1−xCrxO3–0.3BaTiO3 Solid Solutions. Journal of the American Ceramic Society 91: 3731-3734

    CAS  Google Scholar 

  32. Nan CW, Bichurin MI, Dong SX, Viehland D and Srinivasan G (2008) Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of Applied Physics 103031101

    Google Scholar 

  33. Testino A, Mitoseriu L, Buscaglia V, Buscaglia MT, Pallecchi I, Albuquerque AS, Calzona V, Marre D, Siri AS and Nanni P (2006) Preparation of multiferroic composites of BaTiO3-Ni0.5Zn0.5Fe2O4 ceramics. Journal of the European Ceramic Society 26: 3031-3036

    CAS  Google Scholar 

  34. Duong GV and Groessinger R (2007) Effect of preparation conditions on magnetoelectric properties of CoFe2O4-BaTiO3 magnetoelectric composites, pp E624-E627

    Google Scholar 

  35. Babu SN, Srinivas K, Suryanarayana SV and Bhimasankaram T (2008) Magnetoelectric properties in NCMF/PZT particulate and bulk laminate composites. Journal of Physics D-Applied Physics 41165407

    Google Scholar 

  36. Amin A, Spears MA and Kulwicki BM (1983) Reaction of anatase and rutile with barium carbonate. Journal of the American Ceramic Society 66: 733-738

    CAS  Google Scholar 

  37. Beauger A, Mutin JC and Niepce JC (1983) Synthesis reaction of metatitanate BaTiO3.2. Study of solid-solid reaction interfaces. Journal of Materials Science 18: 3543-3550

    CAS  Google Scholar 

  38. Yanagawa R, Senna M, Ando C, Chazono H and Kishi H (2007) Preparation of 200 nm BaTiO3 particles with their tetragonality 1.010 via a solid-state reaction preceded by agglomeration-free mechanical activation. Journal of the American Ceramic Society 90: 809-814

    CAS  Google Scholar 

  39. Buscaglia MT, Bassoli M and Buscaglia V (2008) Solid-state synthesis of nanocrystalline BaTiO3: Reaction kinetics and powder properties. Journal of the American Ceramic Society 91: 2862-2869

    CAS  Google Scholar 

  40. Buscaglia MT, Buscaglia V, Viviani M, Dondero G, Rohrig S, Rudiger A and Nanni P (2008) Ferroelectric hollow particles obtained by solid-state reaction. Nanotechnology 19225602

    Google Scholar 

  41. Lemanov VV (2007) Barium titanate-based solid solutions. Ferroelectrics 354: 69-76

    CAS  Google Scholar 

  42. Huang CC and Cann DP (2008) Phase transitions and dielectric properties in Bi(Zn1/2Ti1/2)O3-BaTiO3 perovskite solid solutions. Journal of Applied Physics 104024117

    Google Scholar 

  43. Lee S and Randall CA (2008) A modified Vegard's law for multisite occupancy of Ca in Ca in BaTiO3-CaTiO3 solid solutions. Applied Physics Letters 92, 111904, 1-3

    Google Scholar 

  44. Maso N, Beltran H, Cordoncillo E, Sinclair DC and West AR (2008) Polymorphism and dielectric properties of b-doped BaTiO3. Journal of the American Ceramic Society 91: 144-150

    CAS  Google Scholar 

  45. Chandratreya SS, Fulrath RM and Pask JA (1981) Reaction Mechanisms in the Formation of PZT Solid Solutions. Journal of the American Ceramic Society 64: 422-425

    CAS  Google Scholar 

  46. Nakamura Y, Chandratreya SS and Fulrath RM (1980) Expansion During the Reaction Sintering of PZT. Ceramurgia international 6: 57-60

    CAS  Google Scholar 

  47. Shrout TR, Papet P, Kim S and Lee GS (1990) Conventionally prepared submicrometer lead-based perovskite powders by reactive calcination. Journal of the American Ceramic Society 73: 1862-1867

    CAS  Google Scholar 

  48. Isupov VA (1980) Reasons for Discrepancies Relating to the Range of Coexistence of Phases in Lead Zirconate-Titanate Solid Solutions. Soviet Physics, Solid State (English translation of Fizika Tverdogo Tela) 22: 98

    Google Scholar 

  49. Kingon AI, Terblanche PJ and Clark JB (1982) Effect of Reactant Dispersion on Formation of PZT Solid Solutions. Ceramics International 8: 108-144

    CAS  Google Scholar 

  50. Hiremath BV, Kingon AI and Biggers JV (1983)Reaction sequence in the formation of lead zirconate-lead titanate solid-solution – role of raw-materials. Journal of the American Ceramic Society 66: 790-793

    CAS  Google Scholar 

  51. Galassi C, Roncari E, Capiani C and Costa A (2000) Influence of processing parameters on the properties of PZT materials In: Galassi C, Dinescu M, Ukino K and Sayer M (eds) Piezoelectric materials: advances in science, technology and applications. Kluwer Academic Publishers, pp 75-86

    Google Scholar 

  52. Medvecky L, Kmecova M and Saksl K (2007) Study of PbZr0.53Ti0.47O3 solid solution formation by interaction of perovskite phases. Journal of the European Ceramic Society 27: 2031-2037

    CAS  Google Scholar 

  53. Shrout TR, Papet P, Kim S and Lee G-S (1990) Conventionally prepared submicrometer lead-based perovskite powders by reactive calcination. Journal of the American Ceramic Society 73: 1862-1867

    CAS  Google Scholar 

  54. Amer AM, Ibrahim SA, Ramadan RM and Ahmed MS (2005) Reactive calcinations derived PZT ceramics. Journal of Electroceramics 14: 273-281

    CAS  Google Scholar 

  55. Randall CA, Kim N, Kucera J-P, Cao W and Shrout TR (1998) Intrinsic and extrinsic size effects in fine-grained morphotropic-phase- boundary lead zirconate titanate ceramics. Journal of the American Ceramic Society 81: 677-688

    CAS  Google Scholar 

  56. Galassi C, Roncari E, Capiani C and Craciun F (1999) Processing and characterization of high Qm ferroelectric ceramics. Journal of the European Ceramic Society 19: 1237

    CAS  Google Scholar 

  57. Swartz SL and Shrout TR (1982) Fabrication of perovskite lead magnesium niobate. Materials Research Bulletin 17: 1245-1250

    CAS  Google Scholar 

  58. Kwon S, Sabolsky EM and Messing GL (2001) Low-temperature reactive sintering of 0.65PMN – 0.35PT. Journal of the American Ceramic Society 84: 648-650

    CAS  Google Scholar 

  59. Sutton WH (1989) Microwave processing of ceramic materials. American Ceramic Society Bulletin 68: 376-386

    CAS  Google Scholar 

  60. Rao KJ, Vaidhyanathan B, Ganguli M and Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chemistry of Materials 11: 882-895

    CAS  Google Scholar 

  61. Gabriel C, Gabriel S, Grant EH, Halstead BSJ and Mingos DMP (1998) Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews 27: 213-223

    CAS  Google Scholar 

  62. Vaidhyanathan B, Singh AP, Agrawal DK, Shrout TR, Roy R and Ganguly S (2001) Microwave Effects in Lead Zirconium Titanate Synthesis: Enhanced Kinetics and Changed Mechanisms. Journal of the American Ceramic Society 84: 1197-1202

    CAS  Google Scholar 

  63. Kong LB, Zhang TS, Ma J and Boey F (2008) Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Progress in Materials Science 53: 207-322

    CAS  Google Scholar 

  64. Beitollahi A and Moravej M (2004) Phase formation study of PZT nanopowder by mechanical activation method at various conditions. Journal of Materials Science 39: 5201

    CAS  Google Scholar 

  65. Rojac T, Kosec A, Malic B and Holc J (2006) The application of a milling map in the mechanochemical synthesis of ceramic oxides. Journal of the European Ceramic Society 26: 3711-3716

    CAS  Google Scholar 

  66. Xue J, Wan D, Lee SE and Wang J (1999) Mechanochemical synthesis of lead zirconate titanate from mixed oxides. Journal of the American Ceramic Society 82: 1687-1692

    CAS  Google Scholar 

  67. Lee SE, Xue JM, Wan DM and Wang J (1999) Effects of mechanical activation on the sintering and dielectric properties of oxide-derived PZT. Acta Materialia 47: 2633-2639

    CAS  Google Scholar 

  68. Alguero M, Moure A, Pardo L, Holc J and Kosec M (2006) Processing by mechano synthesis and properties of piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 with different compositions. Acta Materialia 54: 501-511

    CAS  Google Scholar 

  69. Moure A, Pardo L, Alemany C, Millan P and Castro A (2001) Piezoelectric ceramics based on Bi3TiNbO9 from mechano chemically activated precursors. Journal of the European Ceramic Society 21: 1399-1402

    CAS  Google Scholar 

  70. Ferrer P, Alguero M, Iglesias JE and Castro A (2007) Processing and dielectric properties of Bi4Srn-3TinO3n+3 (n=3, 4 and 5) ceramics obtained from mechanochemically activated precursors. Journal of the European Ceramic Society 27: 3641-3645

    CAS  Google Scholar 

  71. Villegas M, Moure C, Jurado JR and Duran P (1993) Influence of the calcining temperature on the sintering and properties of PZT ceramics. Journal of Materials Science 28: 3482-3488

    CAS  Google Scholar 

  72. Calzada ML and Defrutos J (1994) Nonstoichiometric lead titanate ceramics prepared by a wet-chemical processing. Journal of Materials Science-Materials in Electronics 5: 13-16

    CAS  Google Scholar 

  73. Choy JH, Han YS and Kim JT (1995) Hydroxide coprecipitation route to the piezoelectric oxide Pb(Er,Ti)O3 (PZT). Journal of Materials Chemistry 5: 65-69

    CAS  Google Scholar 

  74. Junmin X and Wang J (1999) Lead zirconate titanate via reaction sintering of hydroxide precursors. Journal of Materials Research 14: 1503-1509

    Google Scholar 

  75. Chen M, Yao X and Zhang L (2001) Preparation of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics using colloidal processing and the field induced strain properties. Journal of the European Ceramic Society 21: 1159

    CAS  Google Scholar 

  76. Camargo ER, Frantti J and Kakihana M (2001) Low-temperature chemical synthesis of lead zirconate titanate (PZT) powders free from halides and organics. Journal of Materials Chemistry 11: 1875-1879

    CAS  Google Scholar 

  77. Roy S, Bysakh S and Subrahmanyam J (2006) Crystallization kinetics of homogeneously precipitated lead zirconate titanate using urea: Comparison with the conventional ammonia precipitated sample. Journal of Materials Research 21: 856-863

    CAS  Google Scholar 

  78. Cernea M, Manea A, Piazza D, Galassi C and Vasile E (2007) Ba (Ti1-xSnx)O3 (x=0.13) dielectric ceramics prepared by coprecipitation. Journal of the American Ceramic Society 90: 1728-1732

    CAS  Google Scholar 

  79. Narendar Y and Messing GL (1997) Kinetic analysis of combustion synthesis of lead magnesium niobate from metal carboxylate gels, Journal of the American Ceramic Society 80: 915-924

    CAS  Google Scholar 

  80. Sengupta SS, Ma L, Adler DL and Payne DA (1995) Extended x-ray-absorption finestructure determination of local-structure in sol-gel-derived lead titanate, lead zirconate, and lead-zirconate-titanate. Journal of Materials Research 10: 1345-1348

    CAS  Google Scholar 

  81. Fumo DA, Jurado JR, Segadaes AM and Frade JR (1997) Combustion synthesis of ironsubstituted strontium titanate perovskites. Materials Research Bulletin 32: 1459-1470

    CAS  Google Scholar 

  82. Banerjee A and Bose S (2004) Free-standing lead zirconate titanate nanoparticles: Lowtemperature synthesis and densification. Chemistry of Materials 16: 5610-5615

    CAS  Google Scholar 

  83. Montanari G, Costa AL, Albonetti S and Galassi C (2005) Nb-doped PZT material by sol-gel combustion. Journal of Sol-Gel Science and Technology 36: 203-211

    CAS  Google Scholar 

  84. Cernea M, Montanari G, Galassi C and Costa AL (2006) Synthesis of la and Nb doped PZT powder by the gel-combustion method. Nanotechnology 17: 1731-1735

    CAS  Google Scholar 

  85. Mercadelli E, Galassi C, Costa AL, Albonetti S and Sanson A (2008) Sol-gel combustion synthesis of BNBT powders. Journal of Sol-Gel Science and Technology 46: 39-45

    CAS  Google Scholar 

  86. Messing GL, Zhang SC, Jayanthi GV and Narendar Y (1993) Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society 76: 2707-2726

    CAS  Google Scholar 

  87. Purwanto A, Wang WN, Lenggoro IW and Okuyama K (2007) Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis. Journal of the European Ceramic Society 27: 4489-4497

    CAS  Google Scholar 

  88. Nimmo W, Ali NJ, Brydson R, Calvert C and Milne SJ (2005) Particle formation during spray pyrolisis of lead zirconate titanate. Journal of the American Ceramic Society 88: 839-844

    CAS  Google Scholar 

  89. Galassi C, Roncari E, Capiani C, Fabbri G, Piancastelli A, Silvano F (2002) Spray-Dried PZT from Precursors: Cold Consolidation and Sintering. Journal of Materials Synthesis and Processing 9: 213-221

    Google Scholar 

  90. Bezzi F, Costa AL, Piazza D, Ruffini A, Albonetti S and Galassi C (2005) PZT prepared by spray drying: From powder synthesis to electromechanical properties. Journal of the European Ceramic Society 25: 3323-3334

    CAS  Google Scholar 

  91. Costa AL, Galassi C and Roncari E (2002) Direct synthesis of PMN samples by spraydrying. Journal of the European Ceramic Society 22: 2093-2100

    CAS  Google Scholar 

  92. Demazeau G (2008) Solvothermal reactions: an original route for the synthesis of novel materials. Journal of Materials Science 43: 2104-2114

    CAS  Google Scholar 

  93. Riman RE, Suchanek WL and Lencka MM (2002) Hydrothermal crystallization of ceramics. Annales De Chimie-Science Des Materiaux 27: 15-36

    CAS  Google Scholar 

  94. Lencka M, Anderko A and Riman RE (1995) Hydrothermal precipitation of lead zirconate titanate solid solutions: thermodynamic modelling and experimental synthesis. 78: 2609

    CAS  Google Scholar 

  95. Ohba Y, Rikitoku T, Tsurumi T and Daimon M (1996) Precipitation of lead zirconate titanate powders under hydrothermal conditions. Journal of the Ceramic Society of Japan 104: 6-10

    CAS  Google Scholar 

  96. Ren ZH, Xu G, Wei X, Liu Y, Shen G and Han GR (2007) Shape evolution of Pb (Zr,Ti)O3 nanocrystals under hydrothermal conditions. Journal of the American Ceramic Society 90: 2645-2648

    CAS  Google Scholar 

  97. Wei X, Xu G, Ren ZH, Wang YG, Shen G and Han GR (2008) Synthesis of highly dispersed barium titanate nanoparticles by a novel solvothermal method. Journal of the American Ceramic Society 91: 315-318

    CAS  Google Scholar 

  98. Wei N, Zhang DM, Han XY, Yang FX, Zhong ZC and Zheng KY (2007) Synthesis and mechanism of ferroelectric potassium tantalate niobate nanoparticles by the solvothermal and hydrothermal processes. Journal of the American Ceramic Society 90: 1434-1437

    CAS  Google Scholar 

  99. Hou YD, Hou L, Zhang TT, Zhu MK, Wang H and Yan H (2007) (Na0.8K0.2)0.5Bi0.5TiO3 nanowires: Low-temperature sol-gel-hydrothermal synthesis and densification. Journal of the American Ceramic Society 90: 1738-1743

    CAS  Google Scholar 

  100. Abothu IR, Lin SF, Komarneni S and Li QH (1999) Processing of Pb(Zr0.52Ti0.48)O3 (PZT) ceramics from microwave and conventional hydrothermal powders. Materials Research Bulletin 34: 1411-1419

    CAS  Google Scholar 

  101. Nyutu EK, Chen CH, Dutta PK and Suib SL (2008) Effect of microwave frequency on hydrothermal synthesis of nanocrystalline tetragonal barium titanate. Journal of Physical Chemistry C 112: 9659-9667

    CAS  Google Scholar 

  102. Aymonier C, Loppinet-Serani A, Reveron H, Garrabos Y and Cansell F (2006) Review of supercritical fluids in inorganic materials science. Journal of Supercritical Fluids 38: 242-251

    CAS  Google Scholar 

  103. Reveron H, Elissalde C, Aymonier C, Bousquet C, Maglione M and Cansell F (2006) Continuous supercritical synthesis and dielectric behaviour of the whole BST solid solution. Nanotechnology 17: 3527-3532

    CAS  Google Scholar 

  104. Lewis JA (2000) Colloidal processing of ceramics. Journal of the American Ceramic Society 83: 2341-2359

    CAS  Google Scholar 

  105. Lange FF (1989) Powder processing science and technology for increased reliability. Journal of the American Ceramic Society 72: 3-15

    CAS  Google Scholar 

  106. Velamakanni BV, Chang JC, Lange FF and Pearson DS (1990) New method for efficient colloidal particle packing via modulation of repulsive lubricating hydration forces. Langmuir 6: 1323-1325

    CAS  Google Scholar 

  107. Paik U and Hackley VA (2000) Influence of solids concentration on the isoelectric point of aqueous barium titanate. Journal of the American Ceramic Society 83: 2381-2384

    CAS  Google Scholar 

  108. Hsu WT, Yu BY and Wei WCJ (2006) Colloidal processing of Pb(Zr,Ti)O3, part I-Pb dissolution. Journal of Ceramic Processing Research 7: 206-210

    Google Scholar 

  109. Bergstrom L, Shinozaki K, Tomiyama H and Mizutani N (1997) Colloidal processing of a very fine BaTiO3 powder – Effect of particle interactions on the suspension properties, consolidation, and sintering behavior. Journal of the American Ceramic Society 80: 291-300

    Google Scholar 

  110. Meng CH, Wei WCJ, Shieh J and Chen CS (2006) Colloidal processing of Pb(Zr,Ti)O3 targets part II – Effect of NbO2.5 additive. Journal of Ceramic Processing Research 7: 281-287

    Google Scholar 

  111. Cho JM and Dogan F (2001) Colloidal processing of lead lanthanum zirconate titanate ceramics. Journal of Materials Science 36: 2397-2403

    CAS  Google Scholar 

  112. Chen ZC, Ring TA and Lemaitre J (1992) Stabilization and processing of aqueous Ba-TiO3 suspension with polyacrylic-acid. Journal of the American Ceramic Society 75: 3201-3208

    CAS  Google Scholar 

  113. Paik U, Hackley VA, Lee J and Lee S (2003) Effect of poly(acrylic acid) and poly(vinyl alcohol) on the solubility of colloidal BaTiO3 in an aqueous medium. Journal of Materials Research 18: 1266-1274

    CAS  Google Scholar 

  114. Yoshikawa J, Lewis JA and Chun B-W (2009) Comb Polymer Architecture, Ionic Strength, and Particle Size Effects on the BaTiO3 Suspension Stability. Journal of the American Ceramic Society 92:S42-S49

    CAS  Google Scholar 

  115. Chen LP and Hsu KC (2008) Synthesis of an amide/carboxylate copolymer for barium titanate suspensions. I. As a dispersant. Journal of Applied Polymer Science 108: 2077-2084

    CAS  Google Scholar 

  116. Mistler RE (1990) Tape casting – the basic process for meeting the needs of the electronics industry. American Ceramic Society Bulletin 69: 1022-1026

    CAS  Google Scholar 

  117. Mistler RE and Twiname ER (2000) Tape Casting: Theory and practice The American ceramic Society, Westerville

    Google Scholar 

  118. Feng JH and Dogan F (2000) Effects of solvent mixtures on dispersion of lanthanummodified lead zirconate titanate tape casting slurries. Journal of the American Ceramic Society 83: 1681-1686

    CAS  Google Scholar 

  119. Galassi C, Roncari E, Capiani C and Pinasco P (1997) PZT-based Suspensions for Tape Casting. Journal of the European Ceramic Society 17: 367-371

    CAS  Google Scholar 

  120. Reddy SB, Singh PP, Raghu N and Kumar V (2002) Effect of type of solvent and dispersant on NANO PZT powder dispersion for tape casting slurry. Journal of Materials Science 37: 929-934

    CAS  Google Scholar 

  121. Jantunen H, Hu T, Uusimaki A and Leppavuori S (2004) Tape casting of ferroelectric, dielectric, piezoelectric and ferromagnetic materials, Journal of the European Ceramic Society 24: 1077-1081

    CAS  Google Scholar 

  122. Hotza D and Greil P (1995) Aqueous tape casting of ceramic powders. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 202: 206-217

    Google Scholar 

  123. Smay JE and Lewis JA (2001) Structural and Property Evolution of Aqueous-Based Lead Zirconate Titanate Tape-Cast Layers. Journal of the American Ceramic Society 84: 2495

    CAS  Google Scholar 

  124. Song YL, Liu XL, Zhang JQ, Zou XY and Chen JF (2005) Rheological properties of nanosized barium titanate prepared by HGRP for aqueous tape casting. Powder Technology 155: 26-32

    CAS  Google Scholar 

  125. Feng JH and Dogan F (2000) Aqueous processing and mechanical properties of PLZT green tapes. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 283: 56-64

    Google Scholar 

  126. Zeng YP, Zimmermann A, Zhou LJ and Aldinger F (2004) Tape casting of PLZST tapes via aqueous slurries, Journal of the European Ceramic Society 24: 253-258

    CAS  Google Scholar 

  127. Sakar-Deliormanli A, Celik E and Polat M (2009) Preparation of the Pb(Mg1/3Nb2/3)O3 films by aqueous tape casting. Journal of the European Ceramic Society 29: 115-123

    CAS  Google Scholar 

  128. Sarkar P and Nicholson PS (1996) Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society 79: 1987-2002

    CAS  Google Scholar 

  129. Nagai M, Yamashita K, Umegaki T and Takuma Y (1993) Electrophoretic deposition of ferroelectric barium-titanate thick-films and their dielectric-properties. Journal of the American Ceramic Society 76: 253-255

    CAS  Google Scholar 

  130. Doungdaw S, Uchikoshi T, Noguchi Y, Eamchotchawalit C and Sakka Y (2005) Electrophoretic deposition of lead zirconate titanate (PZT) powder from ethanol suspension prepared with phosphate ester. Science and Technology of Advanced Materials 6: 927-932

    CAS  Google Scholar 

  131. Corni I, Ryan MP and Boccaccini AR (2008) Electrophoretic deposition: From traditional ceramics to nanotechnology. Journal of the European Ceramic Society 28: 1353-1367

    CAS  Google Scholar 

  132. Ma J and Cheng W (2002) Electrophoretic deposition of lead zirconate titanate ceramics. Journal of the American Ceramic Society 85: 1735-1737

    CAS  Google Scholar 

  133. Suzuki M, Miyayama M, Noguchi Y and Uchikoshi T (2008) Enhanced piezoelectric properties of grain-oriented Bi4Ti3O12-BaBi4Ti4O15 ceramics obtained by magneticfield-assisted electrophoretic deposition method. Journal of Applied Physics 104: 014102-1-6

    Google Scholar 

  134. Calvert P (2001) Inkjet printing for materials and devices. Chemistry of Materials 13: 3299-3305

    CAS  Google Scholar 

  135. Noguera R, Lejeune M and Chartier T (2005) 3D fine scale ceramic components formed by ink-jet prototyping process. Journal of the European Ceramic Society 25: 2055-2059

    CAS  Google Scholar 

  136. Wang T and Derby B (2005) Ink-jet printing and sintering of PZT. Journal of the American Ceramic Society 88: 2053-2058

    CAS  Google Scholar 

  137. Jaworek A and Sobczyk AT (2008) Electrospraying route to nanotechnology: An overview. Journal of Electrostatics 66: 197-219

    CAS  Google Scholar 

  138. Sun D, Rocks SA, Wang D, Edirisinghe MJ and Dorey RA (2008) Novel forming of columnar lead zirconate titanate structures. Journal of the European Ceramic Society 28: 3131-3139

    CAS  Google Scholar 

  139. Park SE and Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics 82: 1804-1811

    CAS  Google Scholar 

  140. Tani T (1998) Crystalline-oriented piezoelectric bulk ceramics with a perovskite-type structure. Journal of the Korean Physical Society 32: S1217

    CAS  Google Scholar 

  141. Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B, Park P, Yilmaz H, Rehrig PW, Eitel KB, Suvaci E, Seabaugh M and Oh KS (2004) Templated grain growth of textured piezoelectric ceramics. Critical Reviews in Solid State and Materials Sciences 29: 45-96

    CAS  Google Scholar 

  142. Suvaci E and Messing GL (2000) Critical factors in the templated grain growth of textured reaction-bonded alumina. Journal of the American Ceramic Society 83: 2041-2048

    CAS  Google Scholar 

  143. Yoon KH, Cho YS and Kang DH (1998) Molten salt synthesis of lead-based relaxors. Journal of Materials Science 33: 2977-2984

    CAS  Google Scholar 

  144. Mao Y, Park TJ, Zhang F, Zhou H and Wong SS (2007) Environmentally friendly methodologies of nanostructure synthesis. Small 3: 1122-1139

    CAS  Google Scholar 

  145. Brosnan KH, Poterala SF, Meyer RJ, Misture S and Messing GL (2009) Templated Grain Growth of < 001 > Textured PMN-28PT Using SrTiO3 Templates. Journal of the American Ceramic Society 92 : S133-S139

    CAS  Google Scholar 

  146. Richter T, Denneler S, Schuh C, Suvaci E and Moos R (2008) Textured PMN-PT and PMN-PZT. Journal of the American Ceramic Society 91: 929-933

    CAS  Google Scholar 

  147. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Nakamura M (2004) Lead-free piezoceramics. Nature 432: 84-87

    CAS  Google Scholar 

  148. Jones JL, Iverson BJ and Bowman KJ (2007) Texture and anisotropy of polycrystalline piezoelectrics. Journal of the American Ceramic Society 90: 2297-2314

    CAS  Google Scholar 

  149. Motohashi T and Kimura T (2007) Development of texture in Bi0.5Na0.5TiO3 prepared by reactive-templated grain growth process. Journal of the European Ceramic Society 27: 3633-3636

    CAS  Google Scholar 

  150. Gao F, Zhang CS, Liu XC, Cheng LH and Tian CS (2007) Microstructure and piezoelectric properties of textured (Na0.84K0. 16)0.5Bi0.5TiO3 lead-free ceramics. Journal of the European Ceramic Society 27: 3453-3458

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Galassi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Galassi, C. (2011). Advances in Processing of Bulk Ferroelectric Materials. In: Multifunctional Polycrystalline Ferroelectric Materials. Springer Series in Materials Science, vol 140. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2875-4_1

Download citation

Publish with us

Policies and ethics