Skip to main content

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 32))

Abstract

The use of N-heterocyclic carbenes (NHCs) to promote organocatalytic transformations has rapidly expanded in recent years, building upon the classic use of these compounds to generate acyl anion equivalents from aldehydes. This chapter gives an overview of the recent progress made in this area, describing the use of NHCs to generate synthetic intermediates from a range of readily accessible starting materials and recent developments in their reactivity. The reaction of an NHC can result in the formation of a range of d1, d2 and d3 synthons (acyl anion, azolium enol or enolate, and azolium homoenolate intermediates) or an electrophilic a1 acylazolium species, with typical processes that proceed through each of these intermediates described. The use of NHCs to participate in stereoselective reaction processes within each of these areas is also described, with an emphasis upon a mechanistic understanding of these processes given where appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. For recent reviews of the ability of NHCs to catalyse organocatalytic processes see Enders D, Niemeier O, Henseler A (2007) Chem Rev 107:5606–5655; Marion N, Díez-González S, Nolan, SP (2007) Angew Chem Int Ed 46:2988–3000

    Google Scholar 

  2. Seebach D (1979) Angew Chem Int Ed 18:239–258

    Article  Google Scholar 

  3. Mattson AE, Scheidt KA (2004) Org Lett 6:4363–4366; Bharadwaj AR, Scheidt KA (2004) Org Lett 6:2465–2468; Mattson AE, Bharadwaj AR, Scheidt KA (2004) J Am Chem Soc 126:2314–2315

    Google Scholar 

  4. Stetter H, Lorenz G (1985) Chem Ber 118:1115–1125; Myers MC, Bharadwaj AR, Milgram, BC, Scheidt KA (2005) J Am Chem Soc 127:14675–14680

    Google Scholar 

  5. Maki EM, Chan A, Phillips EM, Scheidt KA (2007) Org Lett 9:371–374

    Article  CAS  Google Scholar 

  6. Noonan C, Baragwanath L, Connon SJ (2008) Tetrahedron Lett 49:4003–4006; Guin J, Sarkar S De, Grimme S, Studer A (2008) Angew Chem Int Ed 47:8727–8730

    Google Scholar 

  7. Chan A, Scheidt KA (2006) J Am Chem Soc 128:4588–4589; Maki BE, Chan A, Phillips EM, Scheidt KA (2009) Tetrahedron 65:3102–3109

    Google Scholar 

  8. Burstein C, Glorius F (2004) Angew Chem Int Ed 43:6205–6208

    Article  CAS  Google Scholar 

  9. Sohn SS, Rosen EL, Bode JW (2004) J Am Chem Soc 126:14370–14371

    Article  CAS  Google Scholar 

  10. Nair V, Vellalath S, Poonoth M, Mohan R, Suresh E (2006) Org Lett 8:507–509

    Article  CAS  Google Scholar 

  11. Rommel M, Fukuzumi T, Bode JW (2008) J Am Chem Soc 130:17266–17267

    Article  CAS  Google Scholar 

  12. Chan A, Scheidt KA (2007) J Am Chem Soc 129:5334–5335

    Article  CAS  Google Scholar 

  13. Nair V, Vellalath S, Poonoth M, Suresh E (2006) J Am Chem Soc 128:8736–8737

    Article  CAS  Google Scholar 

  14. Chan A, Scheidt KA (2005) Org Lett 7:905–908

    Article  CAS  Google Scholar 

  15. Chiang PC, Rommel M, Bode JW (2009) J Am Chem Soc 131:8714–8718

    Article  CAS  Google Scholar 

  16. Chiang PC, Kim Y, Bode, JW (2009) Chem Commun 4566–4568

    Google Scholar 

  17. Duguet N, Campbell CD, Slawin AMZ, Smith AD (2008) Org Biomol Chem 6:1108–1113

    Article  CAS  Google Scholar 

  18. He L, Jian T-Y, Ye S (2007) J Org Chem 72:7466–7468

    Article  CAS  Google Scholar 

  19. Fischer C, Smith SW, Powell DA, Fu GC (2006) J Am Chem Soc 128:1472–1473

    Article  CAS  Google Scholar 

  20. Grasa GA, Kissling RM, Nolan SP (2002) Org Lett 4:3583–3586

    Article  CAS  Google Scholar 

  21. Nyce GW, Lamboy JA, Connor EF, Waymouth RM, Hedrick JL (2002) Org Lett 4:3587–3590

    Article  CAS  Google Scholar 

  22. For the pioneering stoichiometric transfer of a carboxyl unit from 2-alkoxycarbonylimidazolium salts to benzyl alcohol in the presence of DABCO see Bakhtiar C, Smith EH (1994) J Chem Soc Perkin Trans 1:239–243

    Google Scholar 

  23. Grasa GA, Guveli T, Singh R, Nolan SP (2003) J Org Chem 68:2812–2819

    Article  CAS  Google Scholar 

  24. Singh R, Nolan SP (2005) Chem Commun 5456–5458

    Article  Google Scholar 

  25. Movassaghi M, Schmidt MA (2005) Org Lett 7:2453–2456

    Article  CAS  Google Scholar 

  26. Schmidt MA, Müller P, Movassaghi M (2008) Tetrahedron Lett 49:4316–4318

    Article  CAS  Google Scholar 

  27. Thomson JE, Rix K, Smith AD (2006) Org Lett 8:3785–3789; Thomson JE, Campbell CD, Concellón C, Duguet N, Rix K, Slawin AMZ, Smith AD (2008) J Org Chem 73:2784–2791

    Google Scholar 

  28. Campbell CD, Duguet N, Gallagher KA, Thomson JE, Lindsay AG, O’Donoghue A, Smith AD (2008) Chem Commun 3528–3530

    Article  Google Scholar 

  29. Thomson JE, Kyle AF, Concellón C, Gallagher KA, Lenden P, Morrill LC, Miller AJ, Joannesse C, Slawin AMZ, Smith AD (2008) Synthesis 2805–2818

    Google Scholar 

  30. Reynolds NT, Read de Alaniz J, Rovis T (2004) J Am Chem Soc 126:9518–9519

    Google Scholar 

  31. Chow KY-K, Bode JW (2004) J Am Chem Soc 126:8126–8127

    Article  CAS  Google Scholar 

  32. Sohn SS, Bode JW (2006) Angew Chem Int Ed 45:6021–6024

    Article  CAS  Google Scholar 

  33. Zeitler K (2006) Org Lett 8:637–640

    Article  CAS  Google Scholar 

  34. Li G-Q, Li Y, Dai L-X, You S-L (2007) Org Lett 9:3519–3521; Alcaide B, Almendros P, Cabrero G, Ruiz MP (2007) Chem Commun 4788–4790

    Google Scholar 

  35. Wang L, Thai K, Gravel M (2009) Org Lett 11:891–893

    Google Scholar 

  36. Li G-Q, Dai L-X, You S-L (2009) Org Lett 11:1623–1625

    Article  CAS  Google Scholar 

  37. Vora H, Rovis T (2007) J Am Chem Soc 129:13796–13797; Bode JW, Sohn SS (2007) J Am Chem Soc 129:13798–13799

    Google Scholar 

  38. Ugai T, Tanaka S, Dokawa S (1943) J Pharm Soc Jpn 63:296–300

    Google Scholar 

  39. Breslow R (1958) J Am Chem Soc 80:3719–3726

    Article  CAS  Google Scholar 

  40. Sheehan JC, Hunneman DH (1966) J Am Chem Soc 88:3666–3667

    Article  CAS  Google Scholar 

  41. (a) Sheehan JC, Hara T (1974) J Org Chem 39:1196–1199; (b) Tagaki, W, Tamura Y, Yano Y (1980) Bull Chem Soc Jpn 53:478–480; (c) Martí J, Castells J, López-Calahorra, F (1993) Tetrahedron Lett 34:521–524; (d) Yamashita K, Sasaki S-I, Osaki T, Nango M, Tsuda K (1995) Tetrahedron Lett 36:4817–4820; (e) Knight RL, Leeper F (1997) Tetrahedron Lett 38:3611–3614; (f) Pesch J, Harms K, Bach T (2004) Eur J Org Chem 2025–2035; (g) Dvorak CA, Rawal VH (1998) Tetrahedron Lett 39:2925–2928

    Google Scholar 

  42. (a) Enders D, Breuer K, Raabe G, Runsink J, Teles JH, Melder J-P, Ebel K, Brode S (1995) Angew Chem Int Ed 34:1021–1023; (b) Enders D, Breuer K, Kallfass U, Balansiefer T (2003) Synthesis 1292–1295; (c) Melder J-P, Ebel K, Schneider R, Gehrer E, Harder W, Brode S, Enders D, Breuer K, Teles JH, Raabe G (1996) Helv Chim Acta 79:61–83

    Google Scholar 

  43. Enders D, Breuer K, Teles JH (1996) Helv Chim Acta 79:1217–1221

    Article  CAS  Google Scholar 

  44. Knight RL, Leeper FJ (1998) J Chem Soc Perkin Trans 1:1891–1893

    Article  Google Scholar 

  45. Enders D, Kallfass U (2002) Angew Chem Int Ed 41:1743–1745

    Article  CAS  Google Scholar 

  46. For a computational study on the origin of the enantioselectivity in this reaction, see: Dudding T, Houk KN (2004) Proc Natl Acad Sci USA 101:5770–5775

    Google Scholar 

  47. Enders D, Han J (2008) Tetrahedron: Asymm 19:1367–1371

    Article  CAS  Google Scholar 

  48. Ma Y, Wei S, Wu J, Yang F, Liu B, Lan J, Yang S, You J (2008) Adv Synth Catal 350:2645–2651

    Article  CAS  Google Scholar 

  49. O’Toole S, Connon SJ (2009) Org Biomol Chem 7:3584–3593

    Article  Google Scholar 

  50. Stetter H, Dämkes G (1977) Synthesis 403–404

    Google Scholar 

  51. (a) Enders D, Niemeier O, Balensiefer T (2006) Angew Chem Int Ed 45:1463–1467; (b) Enders D, Niemeier O, Raabe G (2006) Synlett 2431–2434

    Google Scholar 

  52. Takikawa H, Hachisu Y, Bode JW, Suzuki K (2006) Angew Chem Int Ed 45:3492

    Article  CAS  Google Scholar 

  53. Li Y, Feng Z, You S-L (2008) Chem Commun 2263–2265

    Google Scholar 

  54. Takikawa H, Suzuki K (2007) Org Lett 9:2713–2716

    Article  CAS  Google Scholar 

  55. Stetter H (1976) Angew Chem Int Ed 15:639–647

    Article  Google Scholar 

  56. Enders D, Breuer K, Runsink J, Teles JH (1996) Helv Chim Acta 79:1899–1902

    Article  CAS  Google Scholar 

  57. Mennen SM, Blank JT, Tran-Dubé MB, Imbriglio JE, Miller SJ (2005) Chem Commun 195–197

    Article  Google Scholar 

  58. (a) Kerr MS, Read de Alaniz J, Rovis T (2002) J Am Chem Soc 124:10298–10299 (b) Read de Alaniz J, Kerr MS, Moore JL, Rovis T (2008) J Org Chem 73:2033–2040

    Google Scholar 

  59. Kerr MS, Rovis T (2003) Synlett 1934–1936

    Google Scholar 

  60. Cullen SC, Rovis T (2008) Org Lett 10:3141–3144

    Article  CAS  Google Scholar 

  61. Matsumoto Y, Tomioka K (2006) Tetrahedron Lett 47:5843–5846

    Article  CAS  Google Scholar 

  62. Kerr MS, Rovis T (2004) J Am Chem Soc 126:8876–8877

    Article  CAS  Google Scholar 

  63. Moore JL, Kerr MS, Rovis T (2006) Tetrahedron 62:11477–11482

    Article  CAS  Google Scholar 

  64. Read de Alaniz J, Rovis T (2005) J Am Chem Soc 127:6284–6289

    Article  CAS  Google Scholar 

  65. (a) Liu Q, Rovis T (2006) J Am Chem Soc 128:2552–2553; (b) Liu Q, Rovis T (2007) Org Process Res Dev 11:598–604

    Google Scholar 

  66. Enders D (1993) Stereoselective synthesis. Springer, Heidelberg, Germany, p 63

    Google Scholar 

  67. Enders D, Han J, Henseler A (2008) Chem Commun 3989–3991

    Google Scholar 

  68. Liu Q, Perreault S, Rovis T (2008) J Am Chem Soc 130:14066–14067

    Article  CAS  Google Scholar 

  69. DiRocco DA, Oberg KM, Dalton DM, Rovis T (2009) J Am Chem Soc 131:10872–10874

    Article  CAS  Google Scholar 

  70. Li Y, Zhuo ZA, He H, You S-L (2008) Adv Synth Catal 350:1885–1890

    Article  CAS  Google Scholar 

  71. Rommel M, Fukuzumi T, Bode JW (2008) J Am Chem Soc 130:17266–17267

    Article  CAS  Google Scholar 

  72. Phillips EM, Reynolds TE, Scheidt KA (2008) J Am Chem Soc 130:2416–2417

    Article  CAS  Google Scholar 

  73. Nair V, Babu BP, Vellalath S, Suresh E (2008) Chem Commun 747–749

    Article  Google Scholar 

  74. Struble JR, Kaeobamrung J, Bode JW (2008) Org Lett 10:957–960

    Article  CAS  Google Scholar 

  75. Chan A, Scheidt KA (2008) J Am Chem Soc 130:2740–2741

    Article  CAS  Google Scholar 

  76. Maki BE, Chan A, Scheidt KA (2008) Synthesis 1306–1315; Maki BE, Patterson EV, Cramer CJ, Scheidt KA (2009) Org Lett 11:3942–3945

    Google Scholar 

  77. Struble JR, Bode JW (2009) Tetrahedron 65:4957–4967

    Article  CAS  Google Scholar 

  78. Zhang YR, He L, Wu X, Shao PL, Ye S (2008) Org Lett 10:277–280

    Article  Google Scholar 

  79. He L, Lv H, Zhang Y-R, Ye S (2008) J Org Chem 73:8101–8103

    Article  CAS  Google Scholar 

  80. Wang X-N, Lv H, Huang X-L, Ye S (2009) Org Lett 11:4029–4031

    Article  CAS  Google Scholar 

  81. Huang X-L, He L, Shao LP-L, Ye S (2009) Angew Chem Int Ed 48:192–195

    Article  CAS  Google Scholar 

  82. Huang X-L, Shao P-L, Lv H, Ye S (2009) J Org Chem 74:7585–7587

    Article  CAS  Google Scholar 

  83. Lv H, Zhang Y-R, Huang X-L, Ye S (2008) Adv Synth Catal 350:2715–2718

    Article  CAS  Google Scholar 

  84. Zhang Y-R, Lv H, Zhou D, Ye S (2008) Chem Eur J 14:8473–8476

    Article  CAS  Google Scholar 

  85. Wang X-N, Lv H, Huang X-L, Ye S (2009) Org Biomol Chem 7:346–350

    Article  Google Scholar 

  86. Concellon C, Duguet N, Smith AD (2009) Adv Synth Cat 351:3001–3009

    Article  CAS  Google Scholar 

  87. Reynolds NT, Rovis T (2005) J Am Chem Soc 127:16406–16407

    Article  CAS  Google Scholar 

  88. He M, Struble JR, Bode JW (2006) J Am Chem Soc 128:8418–8420

    Article  CAS  Google Scholar 

  89. Kobayashi S, Kinoshita T, Uehara H, Sudo T, Ryu I (2009) Org Lett 11:3934–3937

    Article  CAS  Google Scholar 

  90. He M, Uc GJ, Bode JW (2006) J Am Chem Soc 128:15088–15089

    Article  CAS  Google Scholar 

  91. He M, Beahm BJ, Bode JW (2008) Org Lett 10:3817–3820

    Article  CAS  Google Scholar 

  92. Phillips EM, Wadamoto M, Chan A, Scheidt KA (2007) Angew Chem Int Ed 46:3107–3110

    Article  CAS  Google Scholar 

  93. Li Y, Wang X-Q, Zheng C, You S-L (2009) Chem Commun 5823–5825

    Google Scholar 

  94. Wadamoto M, Phillips EM, Reynolds TE, Scheidt KA (2007) J Am Chem Soc 129:10098–10099

    Article  CAS  Google Scholar 

  95. Phillips EM, Wadamoto M, Scheidt KA (2009) Synthesis 687–690

    Google Scholar 

  96. He L, Zhang Y-R, Huang X-L, Ye S (2008) Synthesis 2825–2829

    Google Scholar 

  97. Kano T, Sasaki K, Maruoka K (2005) Org Lett 7:1347–1349

    Article  CAS  Google Scholar 

  98. Suzuki Y, Yamauchi K, Maramatsu K, Sato M (2004) Chem Commun 2770–2771; Suzuki Y, Muramatsu K, Yamauchi K, Morie Y, Sato M (2006) Tetrahedron 62:302–310

    Google Scholar 

  99. Maki BE, Chan A, Phillips EM, Scheidt KA (2009) Tetrahedron 65:3102–3109

    Article  CAS  Google Scholar 

  100. He M, Bode JW (2008) J Am Chem Soc 130:418–419

    Article  CAS  Google Scholar 

  101. Kaeobamrung J, Bode JW (2009) Org Lett 11:677–680

    Article  CAS  Google Scholar 

  102. Ryan SJ, Candish L, Lupton DW (2009) J Am Chem Soc 131:14176–14177

    Article  CAS  Google Scholar 

  103. Li G-Q, Li Y, Dai L-X, You S-L (2008) Adv Synth Catal 350:1258–1262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Campbell, C.D., Ling, K.B., Smith, A.D. (2010). N-Heterocyclic Carbenes in Organocatalysis. In: Cazin, C. (eds) N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis. Catalysis by Metal Complexes, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2866-2_12

Download citation

Publish with us

Policies and ethics