Heterocyst Envelope Glycolipids

  • Koichiro Awai
  • Sigal Lechno-Yossef
  • C. Peter WolkEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 30)


Heterocyst-forming cyanobacteria simultaneously photosynthesize, producing oxygen (O2), and fix dini-trogen (N2), initially into ammonia, using nitrogenase enzymes that are rapidly inactivated by O2. These cyanobacteria enable nitrogenases to function in an oxic environment by segregating them within specialized cells, called heterocysts, in which O2 is not produced, respiration is highly active, and an envelope barrier of glycolipids greatly slows the rate of entry of O2. We will describe the chemical structure of the heterocyst-specific glycolipids (Hgls), their physiological role, and what is known of their deposition. We will then discuss the clustered genes that encode the proteins required for their biosynthesis, how the glycolipids are believed to be synthesized, and what is known of the regulation of their biosynthesis. Finally, we will examine the relationship between their biosynthetic enzymes and other polyketide synthases, with an emphasis on those from cyanobacteria.


Acyl Carrier Protein Acyl Transferase Nitrogen Deprivation Heterocyst Differentiation Biotin Carboxyl Carrier Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acyl carrier protein


Acyl trans-ferase


β-ketoacyl synthase


Chain length factor


Cyclic adenosine monophosphate




Enoyl reductase


Fatty acid synthase


Heterocyst envelope glycolipid

HGL or HGL layer

Laminated layer of Hgls


Layer of heterocyst envelope polysaccharide


Ketoacyl reductase


Polyketide synthase


Polyunsaturated fatty acid


Thioester reductase



We thank Jeff Elhai (Virginia Commonwealth University) for outstanding help with use of BioBike. This work was supported in part by a Grant-in-Aid for Young Scientists (B) (Nos. 19770025 and 21770033) to Koichiro Awai from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Sigal Lechno-Yossef was supported by U.S. DOE agreement no. 384H963, and additional support was obtained under U.S. DOE grant DOE-FG02– 91ER20021 (Peter Wolk).


  1. Allen EE and Bartlett DH (2002) Structure and regulation of the omega-3 polyunsaturated fatty acid synthase genes from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148: 1903–1913PubMedGoogle Scholar
  2. Awai K and Wolk CP (2007) Identification of the glycosyl transferase required for synthesis of the principal glycoli-pid characteristic of heterocysts of Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 266: 98–102PubMedCrossRefGoogle Scholar
  3. Bateman A, Murzin AG and Teichmann SA (1998) Structure and distribution of pentapeptide repeats in bacteria. Protein Sci 7: 1477–1480PubMedCrossRefGoogle Scholar
  4. Bauer CC (1994) Isolation and Characterization of Genes Involved in Nitrogen Fixation and Heterocyst Differentiation in Anabaena sp. Strain PCC 7120. Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, ILGoogle Scholar
  5. Bauer CC, Ramaswamy KS, Endley S, Scappino LA, Golden JW and Haselkorn R (1997) Suppression of heterocyst differentiation in Anabaena PCC 7120 by a cosmid car-rying wild-type genes encoding enzymes for fatty acid synthesis. FEMS Microbiol Lett 151: 23–30PubMedCrossRefGoogle Scholar
  6. Black TA and Wolk CP (1994) Analysis of a Het- mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing. J Bac-teriol 176: 2282–2292Google Scholar
  7. Black TA, Cai Y and Wolk CP (1993) Spatial expression and autoregulation of hetR, a gene involved in the control of het-erocyst development in Anabaena. Mol Microbiol 9: 77–84. Publishers correction (1993): Mol Microbiol 10: 1153PubMedCrossRefGoogle Scholar
  8. Black K, Buikema WJ and Haselkorn R (1995) The hglK gene is required for localization of heterocyst-specific glycolipids in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 177: 6440–6448PubMedGoogle Scholar
  9. Bolaños L, Lukaszewski K, Bonilla I and Blevins D (2004) Why boron? Plant Physiol Biochem 42: 907–912PubMedCrossRefGoogle Scholar
  10. Bryce TA, Welti D, Walsby AE and Nichols BW (1972) Monohexoside derivatives of long-chain polyhydroxy alcohols; a novel class of glycolipid specific to hetero-cystous algae. Phytochemistry 11: 295–302CrossRefGoogle Scholar
  11. Callahan SM and Buikema WJ (2001) The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol Microbiol 40: 941–950PubMedCrossRefGoogle Scholar
  12. Campbell EL, Cohen MF and Meeks JC (1997) A polyketide-synthase-like gene is involved in the synthesis of het-erocyst glycolipids in Nostoc punctiforme strain ATCC 29133. Arch Microbiol 167: 251–258PubMedCrossRefGoogle Scholar
  13. Cardemil L and Wolk CP (1979) The polysaccharides from heterocyst and spore envelopes of a blue-green alga. Structure of the basic repeating unit. J Biol Chem 254: 736–741PubMedGoogle Scholar
  14. Cardemil L and Wolk CP (1981a) Polysaccharides from the envelopes of heterocysts and spores of the blue-green algae Anabaena variabilis and Cylindrospermum licheni-forme. J Phycol 17: 234–240CrossRefGoogle Scholar
  15. Cardemil L and Wolk CP (1981b) Isolated heterocysts of Anabaena variabilis synthesize envelope polysaccharide. Biochim Biophys Acta 674: 265–276CrossRefGoogle Scholar
  16. Copp JN and Neilan BA (2006) The phosphopantethei-nyl transferase superfamily: phylogenetic analysis and functional implications in cyanobacteria. Appl Environ Microbiol 72: 2298–2305PubMedCrossRefGoogle Scholar
  17. Copp JN, Roberts AA, Marahiel MA and Neilan BA (2007) Characterization of PPTNs, a cyanobacterial phospho-pantetheinyl transferase from Nodularia spumigena NSOR10. J Bacteriol 189: 3133–3139PubMedCrossRefGoogle Scholar
  18. Currier TC, Haury JF and Wolk CP (1977) Isolation and preliminary characterization of auxotrophs of a filamentous cyanobacterium. J Bacteriol 129: 1556–1562PubMedGoogle Scholar
  19. Curtis SE and Hebbar PB (2001) A screen for sequences up-regulated during heterocyst development in Anabaena sp. strain PCC 7120. Arch Microbiol 175: 313–322PubMedCrossRefGoogle Scholar
  20. Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W and Dagan T (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25: 748–761PubMedCrossRefGoogle Scholar
  21. Douglas SE (1994) Chloroplast origins and evolution. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Kluwer, Dordrecht, pp. 91–118CrossRefGoogle Scholar
  22. Ehira S and Ohmori M (2006a) NrrA, a novel nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 59: 1692–1703CrossRefGoogle Scholar
  23. Ehira S and Ohmori M (2006b) NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 188: 8520–8525CrossRefGoogle Scholar
  24. Ehira S, Ohmori M and Sato N (2003) Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 10: 97–113PubMedCrossRefGoogle Scholar
  25. Ehmann DE, Gehring AM and Walsh CT (1999) Lysine biosynthesis in Saccharomyces cerevisiae: mechanism of α-aminoadipate reductase (Lys2) involves posttransla-tional phosphopantetheinylation by Lys5. Biochemistry 38: 6171–6177PubMedCrossRefGoogle Scholar
  26. El-Shehawy R, Lugomela C, Ernst A and Bergman B (2003) Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobac-terium Trichodesmium erythraeum. Microbiology 149: 1139–1146PubMedCrossRefGoogle Scholar
  27. Ernst A, Black T, Cai Y, Panoff JM, Tiwari DN and Wolk CP (1992) Synthesis of nitrogenase in mutants of the cyanobac-terium Anabaena sp. strain PCC 7120 affected in heterocyst development or metabolism. J Bacteriol 174: 6025–6032PubMedGoogle Scholar
  28. Fan Q, Huang G, Lechno-Yossef S, Wolk CP, Kaneko T and Tabata S (2005) Clustered genes required for synthesis and deposition of envelope glycolipids in Anabaena sp. strain PCC 7120. Mol Microbiol 58: 227–243PubMedCrossRefGoogle Scholar
  29. Fan Q, Lechno-Yossef S, Ehira S, Kaneko T, Ohmori M, Sato N, Tabata S and Wolk CP (2006) Signal transduction genes required for heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol 188: 6688–6693PubMedCrossRefGoogle Scholar
  30. Fay P (1992) Oxygen relations of nitrogen fixation in cyano-bacteria. Microbiol Rev 56: 340–373PubMedGoogle Scholar
  31. Fay P and Walsby AE (1966) Metabolic activities of isolated heterocysts of the blue-green alga Anabaena cylindrica. Nature 209: 94–95PubMedCrossRefGoogle Scholar
  32. Fay P, Stewart WDP, Walsby AE and Fogg GE (1968) Is the heterocyst the site of nitrogen fixation in blue-green algae? Nature 220: 810–812PubMedCrossRefGoogle Scholar
  33. Fiedler G, Arnold M, Hannus S and Maldener I (1998a) The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 27: 1193–1202CrossRefGoogle Scholar
  34. Fiedler G, Arnold M and Maldener I (1998b) Sequence and mutational analysis of the devBCA gene cluster encoding a putative ABC transporter in the cyanobacterium Ana-baena variabilis ATCC 29413. Biochim Biophys Acta 1375: 140–143CrossRefGoogle Scholar
  35. Fiedler G, Muro-Pastor AM, Flores E and Maldener I (2001) NtcA-dependent expression of the devBCA operon, encod-ing a heterocyst-specific ATP-binding cassette transporter in Anabaena spp. J Bacteriol 183: 3795–3799PubMedCrossRefGoogle Scholar
  36. Flores E, Herrero A, Wolk CP and Maldener I (2006) Is the periplasm continuous in filamentous multicellular cyano-bacteria? Trends Microbiol 14: 439–443PubMedCrossRefGoogle Scholar
  37. Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122: 571–609CrossRefGoogle Scholar
  38. Gambacorta A, Soriente A, Trincone A and Sodano G (1995) Biosynthesis of the heterocyst glycolipids in the cyanobacterium Anabaena cylindrica. Phytochemistry 39: 771–774CrossRefGoogle Scholar
  39. Gambacorta A, Romano I, Trincone A, Soriente A, Giordano M and Sodano G (1996) The heterocyst glycolipids of cyanobacteria. 5. Heterocyst glycolipids from five nitrogen-fixing cyanobacteria. Gazz Chim Ital 126: 653–656Google Scholar
  40. Gambacorta A, Pagnotta E, Romano I, Sodano G and Trin-cone A (1998) Heterocyst glycolipids from nitrogen-fixing cyanobacteria other than Nostocaceae. Phytochemistry 48: 801–805CrossRefGoogle Scholar
  41. Garcia-Gonzalez M, Mateo P and Bonilla I (1988) Boron protection for O2 diffusion in heterocysts of Anabaena sp. PCC 7119. Plant Physiol 87: 785–789PubMedCrossRefGoogle Scholar
  42. Garcia-Gonzalez M, Mateo P and Bonilla I (1991) Boron requirement for envelope structure and function in Ana-baena PCC 7119 heterocysts. J Exp Bot 42: 925–929CrossRefGoogle Scholar
  43. Giddings TH and Staehelin LA (1978) Plasma membrane architecture of Anabaena cylindrica: occurrence of microplasmodesmata and changes associated with hete-rocyst development and the cell cycle. Cytobiologie 16: 235–249Google Scholar
  44. Golecki JR and Drews G (1974) Zur Struktur der Blaualgen-Zellwand. Gefrierätzuntersuchungen an normalen und extrahierten Zellwänden von Anabaena variabilis. Cyto-biologie 8: 213–227Google Scholar
  45. Gornicki P, Scappino LA and Haselkorn R (1993) Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl carrier protein. J Bacteriol 175: 5268–5272PubMedGoogle Scholar
  46. Granhall U (1976) The presence of cellulose in heterocyst envelopes of blue-green algae and its role in relation to nitrogen fixation. Physiol Plant 38: 208–216CrossRefGoogle Scholar
  47. Haselkorn R (1998) How cyanobacteria count to 10. Science 282: 891–892PubMedCrossRefGoogle Scholar
  48. Haury JF and Wolk CP (1978) Classes of Anabaena vari-abilis mutants with oxygen-sensitive nitrogenase activity. J Bacteriol 136: 688–692PubMedGoogle Scholar
  49. Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S and Metz JG (2006) Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41: 739–747PubMedCrossRefGoogle Scholar
  50. Hebbar PB and Curtis SE (2000) Characterization of devH, a gene encoding a putative DNA binding protein required for heterocyst function in Anabaena sp. strain PCC 7120. J Bacteriol 182: 3572–3581PubMedCrossRefGoogle Scholar
  51. Herrero A, Muro-Pastor AM, Valladares A and Flores E (2004) Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28: 469–487PubMedCrossRefGoogle Scholar
  52. Hijarrubia MJ, Aparicio JF, Casqueiro J and Martin JF (2001) Characterization of the lys2 gene of Acremonium chrys-ogenum encoding a functional α-aminoadipate activating and reducing enzyme. Mol Gen Genet 264: 755–762PubMedCrossRefGoogle Scholar
  53. Holland D and Wolk CP (1990) Identification and characterization of hetA, a gene that acts early in the process of morphological differentiation of heterocysts. J Bacteriol 172: 3131–3137PubMedGoogle Scholar
  54. Huang X, Dong Y and Zhao J (2004) HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc Natl Acad Sci USA 101: 4848–4853PubMedCrossRefGoogle Scholar
  55. Huang G, Fan Q, Lechno-Yossef S, Wojciuch E, Wolk CP, Kaneko T and Tabata S (2005) Clustered genes required for the synthesis of heterocyst envelope polysaccha-ride in Anabaena sp. strain PCC 7120. J Bacteriol 187: 1114–1123PubMedCrossRefGoogle Scholar
  56. Imashimizu M, Yoshimura H, Katoh H, Ehira S and Ohmori M (2005) NaCl enhances cellular cAMP and upregulates genes related to heterocyst development in the cyanobac-terium, Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 252: 97–103PubMedCrossRefGoogle Scholar
  57. Jang J, Wang L, Jeanjean R and Zhang C-C (2007) PrpJ, a PP2C-type protein phosphatase located on the plasma membrane, is involved in heterocyst maturation in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 64: 347–358PubMedCrossRefGoogle Scholar
  58. Jenke-Kodama H, Sandmann A, Muller R and Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22: 2027–2039PubMedCrossRefGoogle Scholar
  59. Kangatharalingam N, Priscu JC and Paerl HW (1992) Hetero-cyst envelope thickness, heterocyst frequency and nitroge-nase activity in Anabaena flos-aquae: influence of exogenous oxygen tension. J Gen Microbiol 138: 2673–2678Google Scholar
  60. Keatinge-Clay AT, Maltby DA, Medzihradszky KF, Khosla C and Stroud RM (2004) An antibiotic factory caught in action. Nat Struct Mol Biol 11: 888–893PubMedCrossRefGoogle Scholar
  61. Khudyakov I and Wolk CP (1997) hetC, a gene coding for a protein similar to bacterial ABC protein exporters, is involved in early regulation of heterocyst differentiation in Anabaena sp. strain PCC 7120. J Bacteriol 179: 6971–6978PubMedGoogle Scholar
  62. Koksharova OA and Wolk CP (2002) Novel DNA-binding proteins in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 184: 3931–3940PubMedCrossRefGoogle Scholar
  63. Krepski WJ and Walton TJ (1983) Biosynthesis of the envelope glycolipids during heterocyst development in Ana-baena cylindrica. J Gen Microbiol 129: 105–110Google Scholar
  64. Kulasooriya SA, Lang NJ and Fay P (1972) The heterocysts of blue-green algae III. Differentiation and nitrogenase activity. Proc R Soc Lond B 181: 199–209PubMedCrossRefGoogle Scholar
  65. Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C and Walsh CT (1996) A new enzyme superfamily — the phosphopantetheinyl transferases. Chem Biol 3:923–936PubMedCrossRefGoogle Scholar
  66. Lambein F and Wolk CP (1973) Structural studies on the glycolipids from the envelope of the heterocyst of Ana-baena cylindrica. Biochemistry 12: 791–798PubMedCrossRefGoogle Scholar
  67. Lang NJ and Fay P (1971) The heterocysts of blue-green algae II. Details of ultrastructure. Proc R Soc Lond B 178: 193–203CrossRefGoogle Scholar
  68. Larkin MA, Blackshields G, Brown NP, Chenna R, McGet-tigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ and Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948PubMedCrossRefGoogle Scholar
  69. Laurent S, Chen H, Bédu S, Ziarelli F, Peng L and Zhang C-C (2005) Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci USA 102: 9907–9912PubMedCrossRefGoogle Scholar
  70. Lázaro S, Fernández-Piñas F, Fernández-Valiente E, Blanco-Rivero A and Leganés F (2001) pbpB, a gene coding for a putative penicillin-binding protein, is required for aerobic nitrogen fixation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 183: 628–636PubMedCrossRefGoogle Scholar
  71. Lechno-Yossef S, Fan Q, Ehira S, Sato N and Wolk CP (2006) Mutations in four regulatory genes have interrelated effects on heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol 188: 7387–7395PubMedCrossRefGoogle Scholar
  72. Leganés F, Blanco-Rivero A, Fernández-Piñas F, Redondo M, Fernández-Valiente E, Fan Q, Lechno-Yossef S and Wolk CP (2005) Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins. Arch Microbiol 184: 234–248PubMedCrossRefGoogle Scholar
  73. Li JH, Laurent S, Konde V, Bédu S and Zhang C-C (2003) An increase in the level of 2-oxoglutarate promotes heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 149: 3257–3263PubMedCrossRefGoogle Scholar
  74. Maldener I, Fiedler G, Ernst A, Fernández-Piñas F and Wolk CP (1994) Characterization of devA, a gene required for the maturation of proheterocysts in the cyanobacterium Ana-baena sp. strain PCC 7120. J Bacteriol 176: 7543–7549PubMedGoogle Scholar
  75. Maldener I, Hannus S and Kammerer M (2003) Description of five mutants of the cyanobacterium Anabaena sp. strain PCC 7120 affected in heterocyst differentiation and identification of the transposon-tagged genes. FEMS Microbiol Lett 224: 205–213PubMedCrossRefGoogle Scholar
  76. Malek D (2002) Untersuchungen zur physiologisches Wirkung und zur Bindung von Borsäure an den Hetero-cysten von Cyanobakterien. Diplomarbeit. Humboldt-Universität zu Berlin, Berlin, GermanyGoogle Scholar
  77. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D and Bryant SH (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35: D237–D240PubMedCrossRefGoogle Scholar
  78. Mariscal V, Herrero A and Flores E (2007) Continuous peri-plasm in a filamentous, heterocyst-forming cyanobacte-rium. Mol Microbiol 65: 1139–1145PubMedCrossRefGoogle Scholar
  79. Massar JP, Travers M, Elhai J and Shrager J (2005) Bio-Lingua: a programmable knowledge environment for biologists. Bioinformatics 21: 199–207PubMedCrossRefGoogle Scholar
  80. Metz JG, Pollard MR, Anderson L, Hayes TR and Lassner MW (2000) Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol 122: 635–644PubMedCrossRefGoogle Scholar
  81. Metz J, Roessler P, Facciotti D, Levering C, Dittrich F, Lass-ner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V and Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293: 290–293PubMedCrossRefGoogle Scholar
  82. Moslavac S, Nicolaisen K, Mirus O, Al Dehni F, Pernil R, Flores E, Maldener I and Schleiff E (2007) A TolC-like protein is required for heterocyst development in Ana-baena sp. strain PCC 7120. J Bacteriol 189: 7887–7895PubMedCrossRefGoogle Scholar
  83. Muro-Pastor AM, Olmedo-Verd E and Flores E (2006) All4312, an NtcA-regulated two-component response regulator in Anabaena sp. strain PCC 7120. FEMS Micro-biol Lett 256: 171–177CrossRefGoogle Scholar
  84. Murry MA and Wolk CP (1989) Evidence that the barrier to the penetration of oxygen into heterocysts depends upon two layers of the cell envelope. Arch Microbiol 151: 469–474CrossRefGoogle Scholar
  85. Murry MA, Horne AJ and Benemann JR (1984) Physiological studies of oxygen protection mechanisms in the heterocysts of Anabaena cylindrica. Appl Environ Microbiol 47: 449–454PubMedGoogle Scholar
  86. Nichols BW and Wood BJB (1968) New glycolipid specific to nitrogen-fixing blue-green algae. Nature 217: 767–768CrossRefGoogle Scholar
  87. Ohki K (2008) Intercellular localization of nitrogenase in a non-heterocystous cyanobacterium (cyanophyte), Trichode-smium sp. NIBB1067. J Oceanogr 64: 211–216CrossRefGoogle Scholar
  88. Okuyama H, Orikasa Y, Nishida T, Watanabe K and Morita N (2007) Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heter-ologous expression. Appl Environ Microbiol 73: 665–670PubMedCrossRefGoogle Scholar
  89. Orozco CC, Risser DD and Callahan SM (2006) Epistasis analysis of four genes from Anabaena sp. strain PCC 7120 suggests a connection between PatA and PatS in hetero-cyst pattern formation. J Bacteriol 188: 1808–1816PubMedCrossRefGoogle Scholar
  90. Peterson RB and Wolk CP (1978) High recovery of nitro-genase activity and of 55Fe-labeled nitrogenase in hetero-cysts isolated from Anabaena variabilis. Proc Natl Acad Sci USA 75: 6271–6275PubMedCrossRefGoogle Scholar
  91. Ramírez ME, Hebbar PB, Zhou R, Wolk CP and Curtis SE (2005) Anabaena sp. strain PCC 7120 gene devH is required for synthesis of the heterocyst glycolipid layer. J Bacteriol 187: 2326–2331PubMedCrossRefGoogle Scholar
  92. Rangan VS and Smith S (1996) Expression in Escherichia coli and refolding of the malonyl-/acetyltransferase domain of the multifunctional animal fatty acid synthase. J Biol Chem 271: 31749–31755PubMedCrossRefGoogle Scholar
  93. Rippka R and Stanier RY (1978) The effects of anaerobiosis on nitrogenase synthesis and heterocyst development by nostocacean cyanobacteria. J Gen Microbiol 105: 83–94Google Scholar
  94. Rippka R, Deruelles J, Waterbury JB, Herdman M and Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61Google Scholar
  95. Serre L, Verbree EC, Dauter Z, Stuitje AR and Derewenda ZS (1995) The Escherichia coli malonyl-CoA:acyl carrier protein transacylase at 1.5-A resolution. Crystal structure of a fatty acid synthase component. J Biol Chem 270: 12961–12964PubMedCrossRefGoogle Scholar
  96. Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7: 285–295PubMedCrossRefGoogle Scholar
  97. Shi L, Li J-H, Cheng Y, Wang L, Chen W-L and Zhang C-C (2007) Two genes encoding protein kinases of the HstK family are involved in synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 189: 5075–5081PubMedCrossRefGoogle Scholar
  98. Soriente A, Sodano G, Gambacorta A and Trincone A (1992) Structure of the “heterocyst glycolipids” of the marine cyanobacterium Nodularia harveyana. Tetrahedron 48: 5375–5384CrossRefGoogle Scholar
  99. Soriente A, Gambacorta A, Trincone A, Sili C, Vincenzini M and Sodano G (1993) Heterocyst glycolipids of the cyanobac-terium Cyanospira rippkae. Phytochemistry 33: 393–396CrossRefGoogle Scholar
  100. Soriente A, Bisogno T, Gambacorta A, Romano I, Sili C, Trincone A and Sodano G (1995) Reinvestigation of hete-rocyst glycolipids from the cyanobacterium, Anabaena cylindrica. Phytochemistry 38: 641–645CrossRefGoogle Scholar
  101. Suzuki T, Yoshimura H, Ehira S, Ikeuchi M and Ohmori M (2007) AnCrpA, a cAMP receptor protein, regulates nif-related gene expression in the cyanobacterium Anabaena sp. strain PCC 7120 grown with nitrate. FEBS Lett 581: 21–28PubMedCrossRefGoogle Scholar
  102. Tamura K, Dudley J, Nei M and Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599PubMedCrossRefGoogle Scholar
  103. Tang Y, Tsai SC and Khosla C (2003) Polyketide chain length control by chain length factor. J Am Chem Soc 125: 12708–12709PubMedCrossRefGoogle Scholar
  104. Thiel T, Lyons EM, Erker JC and Ernst A (1995) A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA 92: 9358–9362PubMedCrossRefGoogle Scholar
  105. Valladares A, Maldener I, Muro-Pastor AM, Flores E and Herrero A (2007) Heterocyst development and diazo-trophic metabolism in terminal respiratory oxidase mutants of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 189: 4425–4430PubMedCrossRefGoogle Scholar
  106. Walsby AE (1985) The permeability of heterocysts to the gases nitrogen and oxygen. Proc R Soc Lond B 226: 345–366CrossRefGoogle Scholar
  107. Walsby AE (2007) Cyanobacterial heterocysts: terminal pores proposed as sites of gas exchange. Trends Microbiol 15: 340–349PubMedCrossRefGoogle Scholar
  108. Walsby AE and Nichols BW (1969) Lipid composition of heterocysts. Nature 168: 673–674CrossRefGoogle Scholar
  109. Wang Y and Xu X (2005) Regulation by hetC of genes required for heterocyst differentiation and cell division in Anabaena sp. strain PCC 7120. J Bacteriol 187: 8489–8493PubMedCrossRefGoogle Scholar
  110. Wang Y, Lechno-Yossef S, Gong Y, Fan Q, Wolk CP and Xu X (2007) Predicted glycosyl transferase genes located outside the HEP island are required for formation of het-erocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J Bacteriol 189: 5372–5378PubMedCrossRefGoogle Scholar
  111. Winkenbach F, Wolk CP and Jost M (1972) Lipids of membranes and of the cell envelope in heterocysts of a blue-green alga. Planta 107: 69–80CrossRefGoogle Scholar
  112. Wolk CP (1967) Physiological basis of the pattern of vegetative growth of a blue-green alga. Proc Natl Acad Sci USA 57: 1246–1251PubMedCrossRefGoogle Scholar
  113. Wolk CP (2000) Heterocyst formation in Anabaena. In: Brun YV, Shimkets LJ (eds) Prokaryotic Development. ASM Press, Washington, DC, pp. 83–104,Google Scholar
  114. Wolk CP and Simon RD (1969) Pigments and lipids of heterocysts. Planta 86: 92–97CrossRefGoogle Scholar
  115. Wolk CP, Cai Y, Cardemil L, Flores E, Hohn B, Murry M, Schmetterer G, Schrautemeier B and Wilson R (1988) Isolation and complementation of mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dini-trogen. J Bacteriol 170: 1239–1244PubMedGoogle Scholar
  116. Wolk CP, Ernst A and Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Kluwer, Dordrecht, pp. 769–823CrossRefGoogle Scholar
  117. Wolk CP, Fan Q, Zhou R, Huang G, Lechno-Yossef S, Kuritz T and Wojciuch E (2007) Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch Microbiol 188: 551–563PubMedCrossRefGoogle Scholar
  118. Xu X and Wolk CP (2001) Role for hetC in the transition to a nondividing state during heterocyst differentiation in Anabaena sp. J Bacteriol 183: 393–396PubMedCrossRefGoogle Scholar
  119. Xu X, Khudyakov I and Wolk CP (1997) Lipopolysaccha-ride dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120. J Bacte-riol 179: 2884–2891Google Scholar
  120. Xu X, Elhai J and Wolk CP (2008) Transcriptional and developmental responses by Anabaena to deprivation of fixed nitrogen. In: Herrero A and Flores E (eds) Genomics and Molecular Biology of Cyanobacteria. Horizon Scientific Press, Norwich, pp. 383–422Google Scholar
  121. Yazawa K (1996) Production of eicosapentaenoic acid from marine bacteria. Lipids 31: S297–S300PubMedCrossRefGoogle Scholar
  122. Zhang Y-M, Wu B, Zheng J and Rock CO (2003) Key residues responsible for acyl carrier protein and β–ketoacyl-acyl carrier protein reductase (FabG) interaction. J Biol Chem 278: 52935–52943PubMedCrossRefGoogle Scholar
  123. Zhang C-C, Laurent S, Sakr S, Peng L and Bédu S (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59: 367–375PubMedCrossRefGoogle Scholar
  124. Zhao J and Wolk CP (2008) Developmental biology of heterocysts, 2006. In: Whitworth DE (ed) Myxobacteria Multicellularity and Differentiation. ASM Press, Washington, DC, pp. 397–418Google Scholar
  125. Zhu J, Kong R and Wolk CP (1998) Regulation of hepA of Anabaena sp. strain PCC 7120 by elements 5′ from the gene and by hepK. J Bacteriol 180: 4233–4242PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Koichiro Awai
    • 1
  • Sigal Lechno-Yossef
    • 2
    • 3
  • C. Peter Wolk
    • 4
    Email author
  1. 1.Division of Global Research LeadersShizuoka UniversitySuruga-kuJapan
  2. 2.Great Lakes Bioenergy Research CenterUniversity of WisconsinMadisonUSA
  3. 3.MSU-DOE Plant Research LaboratoryMichigan State UniversityEast LansingUSA
  4. 4.MSU-DOE Plant Research Laboratory and Department of Plant BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations