Lipids in Algae, Lichens and Mosses

  • Reimund Goss
  • Christian WilhelmEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 30)


Lipids from algae, lichens and mosses are highly diverse and differ from prokaryotic cyanobacteria and vascular plants in many aspects. Although in lower eukaryotes most of the lipids have functions similar to those in vascular plants, the chain length and the desaturation degree can be significantly higher than that observed in vascular plants. This is due primarily to the fact that these organisms are exposed to extreme environments with respect to drought and temperature. Algae, lichens and mosses may contain exotic lipids like betaine lipids, n-alkanes or halogenated lipids, which will be of industrial interest in the near future. In the present chapter, the lipid composition of algae, lichens and mosses will be presented with a special focus on lipids that are found exclusively in these groups. New data on the function of membrane lipids in algae, lichens and mosses will be discussed, and the effect of environmental changes on the lipid composition in the lower eukaryotes will be outlined briefly.


Green Alga Vascular Plant Thylakoid Membrane Brown Alga Algal Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Arachidonic acid










Docosahexaenoic acid


Eicosapentaenoic acid


Fucoxanthin-chlorophyllbinding protein


Light-harvesting Chl a/b binding complex








Phosphatidyl glycerol




Polyunsaturated fatty acids




Triacyl glycerol


Violaxanthin de-epoxidase



The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft (Wi 764/ 12 and Go 818/6-1).


  1. Adolph S, Bach S, Blondel M, Cueff A, Moreau M, Pohnert G, Poulet SA, Wichard T and Zuccaro A (2004) Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla. J Exp Biol 207: 2935–2946PubMedCrossRefGoogle Scholar
  2. Ahlgren G, Gustafsson I-B and Boberg M (1992) Fatty acid content and chemical composition of freshwater micro-algae. J Phycol 28: 37–50CrossRefGoogle Scholar
  3. Ahmadjíjan V (1993) The Lichen Symbiosis, Wiley, New YorkGoogle Scholar
  4. Allard B and Templier J (2000) Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54: 369–380PubMedCrossRefGoogle Scholar
  5. Andersson MX, Larsson KE, Tjellström H, Liljenberg C and Sandelius AS (2005) Phosphate limited oat. The plasma membrane and the tonoplast as major targets for phospholipid to glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280: 27578–27586PubMedCrossRefGoogle Scholar
  6. Apostolova EL, Domonkos I, Dobrikova AG, Sallai A, Bogos B, Wada H, Gombos Z and Taneva SG (2008) Effect of phosphatidylglycerol depletion on the surface electric properties and the fluorescence emission of thylakoid membranes. J Photochem Photobiol B: Biol 91: 51–57CrossRefGoogle Scholar
  7. Arakawa-Kobayashi S, Kobayashi T, Hasebe M and Kanaseki T (2004) Identification of crystalline material found in the thallus of the lichen Myelochroa leucotyliza. J Struct Biol 146: 393–400PubMedCrossRefGoogle Scholar
  8. Aubert C, Juge C, Boisson A-M, Gout E and Bligny R (2007) Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 226: 1287–1297PubMedCrossRefGoogle Scholar
  9. Benning C, Beatty JT, Prince RC and Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90: 1561–1565PubMedCrossRefGoogle Scholar
  10. Berge J-P, Gouygou J-P, Dubacq J-P and Durant P (1995) Reassessment of the lipid composition of the diatom Sce-letonema costatum. Phytochemistry 39: 1017–1021CrossRefGoogle Scholar
  11. Bernart MW, Whatley G and Gerwick WH (1993) Unprecedented oxylipins from the marine green alga Acrosiphonia coalita. J Nat Prod 56: 245–259PubMedCrossRefGoogle Scholar
  12. Bisignano G, Lagana MG, Trombetta D, Arena S, Nostro A, Uccella N, Mazzanti G and Saja A (2001) In vitro antibacterial activity of some aliphatic aldehydes from Olea europea L. FEMS Microbiol Lett 198: 9–13PubMedCrossRefGoogle Scholar
  13. Blee E (1998) Phytooxylipins and plant defense actions. Prog Lipid Res 37: 33–72PubMedCrossRefGoogle Scholar
  14. Boonprab K, Matsui K, Yoshida M, Akakabe Y, Chirarpat A and Kajiwara T (2003) C6-aldehyde formation by fatty acid hydroperoxidase lyase in the brown alga Laminaria angustata. Z Naturforsch 58C: 207–214Google Scholar
  15. Bouarab K, Adas F, Gaquerel E, Kloareg B, Salaün J-P and Potin P (2004) The innate immunity of red algae involves oxylipins from both eicosanoic and octadecanoic pathways. Plant Physiol 135: 1838–1848PubMedCrossRefGoogle Scholar
  16. Brown MR, Dunstan GA, Norwood SJ and Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32: 64–73CrossRefGoogle Scholar
  17. Casotti R, Mazzi S, Brunet C, Vantrepotte V, Ianora A and Miralto A (2005) Growth inhibition and toxicity of the diatom aldehyde 2-trans-4-trans decadienal in Thalassiosira weissflogii (Bacillariophyceae). J Phycol 41: 7–20CrossRefGoogle Scholar
  18. Chiou S-Y, Su W-W and Su Y-C (2001) Optimizing production of polyunsaturated fatty acids in Marchantia polymor-pha cell suspension culture. J Biotechnol 85: 247–257PubMedCrossRefGoogle Scholar
  19. Cho SH and Thompson GA (1987) On the metabolic relationship between monogalactosyldiacylglycerol and diga-lactosyldiacylglycerol molecular species in Dunaliella salina. J Biol Chem 262: 7586–7593PubMedGoogle Scholar
  20. Chooi Y-H, Stalker DM, Davis MA, Fujii I, Elix JA, Lou-whoff SHJJ and Lawrie AC (2008) Cloning and sequence characterization of a non-reducing polyketide synthase gene from the lichen Xanthoparmelia semiviridis. Mycol Res 112: 147–161PubMedCrossRefGoogle Scholar
  21. Cordereiro LMC, Iacomini M and Stocker-Wörgötter E (2004) Culture studies and secondary compounds of six Ramalina species. Mycol Res 108: 489–497CrossRefGoogle Scholar
  22. Coupe EE, Smyth MG, Fosberry A, Hall RM and Littlechild JA (2007) The dodecameric vanadium-dependent haloper-oxidase from the marine algae Corallina officinalis: cloning, expression, and refolding of the recombinant enzyme. Protein Expr Purif 52: 265–272PubMedCrossRefGoogle Scholar
  23. Cove D, Bezanilla M, Harries P and Quatrano R (2006) Mosses as model systems for the study of metabolism and development. Annu Rev Plant Biol 57: 497–520PubMedCrossRefGoogle Scholar
  24. Deltoro VI, Gimeno C, Calatayud A and Barreno E (1999) Effects of SO2 fumigations on photosynthetic CO2 gas exchange, chlorophyll a fluorescence emission and anti-oxidant enzymes in the lichens Evernia prunastri and Ramalina farinacea. Physiol Plant 105: 648–654CrossRefGoogle Scholar
  25. Dembitsky VM (1992) Lipids of lichens. Prog Lipid Res 31: 373–397PubMedCrossRefGoogle Scholar
  26. Dembitsky VM and Srebnik M (2002) Natural halogenated fatty acids: their analogues and derivatives. Prog Lipid Res 41: 315–367PubMedCrossRefGoogle Scholar
  27. Dembitsky VM, Rezanka F, Bychek I and Afonina O (1993a) Polar lipids and fatty acids composition of some Bryophytes. Phytochemistry 33: 1009–1014CrossRefGoogle Scholar
  28. Dembitsky VM, Rezanka F, Bychek I and Afonina O (1993b) Acetylenic acids and lipid composition of some mosses from Russia. Phytochemistry 33: 1021–1027CrossRefGoogle Scholar
  29. Demmig-Adams B, Adams WW and Mattoo AK (eds) (2006) Photoprotection, Photoinhibition, Gene Regulation and Environment, Kluwer, DordrechtGoogle Scholar
  30. Derten BK, de Kok LJ and Kuiper PC (1977) Lipid and fatty acid composition of tree-growing and terrestrial lichens. Physiol Plant 40: 177–180Google Scholar
  31. D'Ippolito G, Tucci S, Cutignano A, Romano G, Cimino G, Miralto A and Fontana A (2004) The role of complex lip-ids in the synthesis of bioactive aldehydes of the marine diatom Skeletonema costatum. Biochim Biophys Acta 1686: 100–107PubMedCrossRefGoogle Scholar
  32. Domonkos I, Laczko-Dobos H and Gombos Z (2008) Lipid-assisted protein–protein interactions that support photosyn-thetic and other cellular activities. Prog Lip Res 47: 422–435CrossRefGoogle Scholar
  33. Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C and Tremolieres A (1994) Evidence from in vivo manipulations of lipid composition in mutants that the Δ3-trans-hexadecanoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226: 473–482PubMedCrossRefGoogle Scholar
  34. Eichenberger W (1982) Distribution of diacylglyceryl-O-4′-(N,N,N-trimethyl)-homoserine in different algae. Plant Sci Lett 24: 91–95CrossRefGoogle Scholar
  35. Eichenberger W (1993) Betaine lipids in lower plants. Distribution of DGTS, DGTA and phospholipids, and the intracellular localization and site of biosynthesis of DGTS. Plant Physiol Biochem 31: 213–221Google Scholar
  36. Eichenberger W, Bigler P, Gfeller H, Gribi C and Schmid CE (1995) Phosphatidyl-O-[N-(2-hydroxyethyl)glycine] (PHEG), a novel glycerophospholipid from brown algae (Phaeophyceae). J Plant Physiol 146: 398–404CrossRefGoogle Scholar
  37. El-Hafid L, Ti ATP, Zuilyfodil Y and DaSilva JV (1989) Enzymatic breakdown of polar lipids in cotton leaves under water stress. Degradation of monogalactosyl-dia-cylglycerol. Plant Physiol Biochem 27: 495–502Google Scholar
  38. El Maarouf H, Zuily-Fodil Y, Gareil M, D'Arcy-Lameta A and Pham-Thi AT (1999) Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata L. Walp. differing in drought tolerance. Plant Mol Biol 39: 1257–1265PubMedCrossRefGoogle Scholar
  39. El-Sheek MM and Rady AA (1995) Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri. Phyton 35: 139–151Google Scholar
  40. Essigmann B, Güler S, Narang RA, Linke D and Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955PubMedCrossRefGoogle Scholar
  41. Falk-Petersen S, Sargent JR, Henderson J, Hegseth EN, Hop H and Okolodkov YB (1998) Lipids and fatty acids in ice algae and phytoplankton from the marginal ice zone in the Barents Sea. Polar Biol 20: 41–47CrossRefGoogle Scholar
  42. Garab G, Lohner K, Laggner P and Farkas T (2000) Self-regulation of the lipid content of membranes by non-bilayer lipids. Trends Plant Sci 5: 489–494PubMedCrossRefGoogle Scholar
  43. Garnier J, Wu B, Maroc J, Guyon D and Tremolieres A (1990) Restoration of both an oligomeric form of the light-harvesting antenna CP II and a fluorescence state II-state I transition by Δ3-trans-hexadecanoic acid-containing phos-phatidylglycerol in cells of a mutant of Chlamydomonas reinhardtii. Biochim Biophys Acta 1020: 153–162CrossRefGoogle Scholar
  44. Garty J, Weissman L, Tamir O, Beer S, Cohen Y, Karnieli A and Orlovsky L (2000) Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacerta exposed to air pollution. Physiol Plant 109: 410–418CrossRefGoogle Scholar
  45. Gerwick WH (1994) Structure and biosynthesis of marine algal oxylipins. Biochim Biophys Acta 1211: 243–255PubMedCrossRefGoogle Scholar
  46. Girke T, Schmidt H, Zähringer U, Reski R and Heinz E (1998) Identification of a novel Δ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J 15: 39–48PubMedCrossRefGoogle Scholar
  47. Gombos Z, Varkonyi Z, Hagio M, Iwaki M, Kovacs L, Masamoto K, Itoh S and Wada H (2002) Phosphatidylg-lycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41: 3796–3802PubMedCrossRefGoogle Scholar
  48. Goss R, Lohr M, Latowski L, Grzyb J, Vieler A, Wilhelm C and Strzalka K (2005) Role of hexagonal structure forming lipids in diadinoxanthin and violaxanthin solubiliza-tion and de-epoxidation. Biochemistry 44: 4028–4036PubMedCrossRefGoogle Scholar
  49. Goss R, Latowski D, Grzyb J, Vieler A, Lohr M, Wilhelm C and Strzalka K (2007) Lipid dependence of diadinox-anthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. Biochim Biophys Acta 1768: 67–75PubMedCrossRefGoogle Scholar
  50. Gounaris K, Sen A, Brain APR, Quinn P and Williams WP (1983) The formation of non-bilayer structures in total polar lipid extracts of chloroplast membranes. Biochim Biophys Acta 728: 129–139CrossRefGoogle Scholar
  51. Gregson RP, Marwood JF and Quinn RJ (1979) The occurrence of prostaglandines PGE2 and PGF2a in a plant-the red alga Gracilaria lichenoides. Tetrahedron Lett 20: 4505–4508CrossRefGoogle Scholar
  52. Guerriero A, D'Ambrosio M and Pietra F (1990) Novel hydroxyicosatetraenoic and hydroxyicosapentaenoic acids and a 13-oxo analog. Isolation from a mixture of the calcareous red algae Lithothamnion corallioides and Lithothamnion calcareum of Brittany waters. Helv Chim Acta 73: 2183–2189CrossRefGoogle Scholar
  53. Güler S, Seeliger A, Härtel H, Renger G and Benning CA (1996) A null mutant of Synechococcus sp. PCC 7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271: 7501–7507PubMedCrossRefGoogle Scholar
  54. Guschina IA and Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45: 160–186PubMedCrossRefGoogle Scholar
  55. Guschina IA, Dobson G and Harwood JL (2002) Lipid metabolism in the moss Dicranum scoparium: effect of light conditions and heavy metals on the accumulation of acetylenic triacylglycerols. Physiol Plant 116: 441–450CrossRefGoogle Scholar
  56. Hansen CE and Rossi P (1991) The effects of culture conditions on accumulation of arachidonic and eicos-apentaenoic acids in cultured cells of Rhytidiadelphus squarrosus and Eurhynchium striatum. Phytochemistry 30: 1837–1841CrossRefGoogle Scholar
  57. Hansen E, Ernstsen A and Eilertsen HC (2004) Isolation and characterization of a cytotoxic polyunsaturated aldehyde from the marine phytoplankter Phaeocystis pouchetii (Hariot) Lagerheim. Toxicology 199: 207–217PubMedCrossRefGoogle Scholar
  58. Haranczyk H, Strzalka K, Dietrich W and Blicharski JS (1995) 31P-NMR observation of the temperature and glyc-erol induced non-lamellar phase formation in wheat thy-lakoid membranes. J Biol Phys 21: 125–139CrossRefGoogle Scholar
  59. Härtel H and Benning C (2000) Can digalactosyldiacylglyc-erol substitute for phosphatidylcholine upon phosphate deprivation in leaves and roots of Arabidopsis? Biochem Soc Trans 28: 729–732PubMedCrossRefGoogle Scholar
  60. Hartmann E, Beutelmann P, Vanderkerkhove O, Euler R and Kohn G (1986) Moss cell cultures as sources for arachi-donic and eicosapentaenoic acids. FEBS Lett 198: 51–55CrossRefGoogle Scholar
  61. Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis. Kluwer, Dordrecht, pp. 53–64Google Scholar
  62. Harwood JL and Jones AL (1989) Lipid metabolism in algae. Adv Bot Res 16: 1–53CrossRefGoogle Scholar
  63. Henderson J, Hegseth EN and Park MT (1998) Seasonal variation in lipid and fatty acid composition of ice algae from the Barents Sea. Polar Biol 20: 48–55CrossRefGoogle Scholar
  64. Hewson WD and Hager LP (1980) Bromoperoxidases and halogenated lipids in marine algae. J Phycol 16: 340–345CrossRefGoogle Scholar
  65. Hunek S and Yoshimura I (1996) Identification of Lichen Substances, Springer, BerlinCrossRefGoogle Scholar
  66. Ianora A, Boersma M, Casotti R, Fontana A, Harder J, Hoffman F, Pavia H, Potin P, Poulet SA and Toth G (2006) New trends in marine chemical ecology. Estuaries and Coasts 29: 531–551Google Scholar
  67. Ichiba T, Scheuer J and Kellyborges M (1994) Sponge-derived polyunsaturated C16 di- and tribromocarboxylic acids. Helv Chim Acta 76: 2814–2816CrossRefGoogle Scholar
  68. Isupov MN, Dalby AR, Brindley AA, Izumi Y, Tanabe T, Murshudov GN and Littlechild JA (2000) Crystal structure of dodecameric vanadium-dependent bromoperoxi-dase from the red alga Corallina officinalis. J Mol Biol 299: 1035–1049PubMedCrossRefGoogle Scholar
  69. Jakob T, Wagner H, Stehfest K and Wilhelm C (2007) A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation. J Exp Bot 58: 2102–2112CrossRefGoogle Scholar
  70. Jiang ZD and Gerwick WH (1991) An aldehyde-containing galactolipid from the red alga Gracilariopsis lemanei-formis. Lipids 26: 960–963PubMedCrossRefGoogle Scholar
  71. Jiang ZD, Ketchum SO and Gerwick WH (2000) 5-Lipox-ygenase-derived oxylipins from the red alga Rhodymenia pertusa. Phytochemistry 53: 129–133PubMedCrossRefGoogle Scholar
  72. Jones MR (2007) Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 46: 56–87PubMedCrossRefGoogle Scholar
  73. Jouhet J, Marechal E, Baldan B, Bligny R, Joyard J and Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167: 863–874PubMedCrossRefGoogle Scholar
  74. Kaewsuwan S, Cahoon E, Perroud PF, Wiwat C, Panvisava N, Quatrano R, Cove D and Bunyapraphatsara N (2006) Identification and functional characterization of the moss Physcomitrella patens Δ 5-desaturase gene involved in arachidonic and eiosapentenoic acid biosynthesis. J Biol Chem 281: 21988–21997PubMedCrossRefGoogle Scholar
  75. Khozin I, Adlerstein D, Bigongo C, Heimer YM and Cohen Z (1997) Elucidation of the biosynthesis of eicosapentenoic acid in the microalga Porphyridium cruentum. 2. Studies with radiolabeled precursors. Plant Physiol 114: 223–230PubMedGoogle Scholar
  76. Kohn G, Hartmann E, Stymne S and Beutelmann P (1994) Biosynthesis of acetylenic fatty acids in the moss Cerato-don purpureus. J Plant Physiol 144: 265–271CrossRefGoogle Scholar
  77. Koskimies S and Nyberg H (1991) Effects of temperature and light on the glycolipids of Sphagnum fimbriatum. Phytochemistry 30: 2529–2536CrossRefGoogle Scholar
  78. Kotlova ER and Sinyutina NF (2005) Changes in the content of individual lipid classes of a lichen Peltigera aph-thosa during dehydration and subsequent rehydration. Fiziologiya Rastenii 52: 43–50Google Scholar
  79. Krupina MV and Date W (1991) Occurrence of jasmonic acid in the red alga Gelidium latifolium. Z Naturforsch 46C: 1127–1129Google Scholar
  80. Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH and Barber J (2000) Phosphati-dylglycerol is involved in the dimerization of Photosystem II. J Biol Chem 275: 6509–6514PubMedCrossRefGoogle Scholar
  81. Künzler K and Eichenberger W (1997) Betaine lipids and zwitterionic phospholipids in plants and fungi. Phyto-chemistry 46: 883–892Google Scholar
  82. Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M, Kostecka-Gugala A and Strzalka K (2002) Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxi-dase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Eur J Biochem 269: 4656–4665PubMedCrossRefGoogle Scholar
  83. Latowski D, Akerlund H-E and Strzalka K (2004) Violaxan-thin de-epoxidase, the xanthophyll cycle enzyme, requires lipid hexagonal structures for its activity. Biochemistry 43: 4417–4420PubMedCrossRefGoogle Scholar
  84. Li M, Welti R and Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases D zeta1 and D zeta 2 in phosphatidylcholine hydrolysis and digalactosyldia-cylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142: 750–761PubMedCrossRefGoogle Scholar
  85. Liem PQ and Lauer M-H (1976a) Structures, teneurs et composition de esters sulfuriques, sulfoniques, phosphoriques des glycosyldiglycerides de trois fucacees. Biochimie 58: 1367–1380CrossRefGoogle Scholar
  86. Liem PQ and Lauer M-H (1976b) Les alcools aliphatiques sulfates: noveaux lipides polaires isoles des diverses fucaees. Biochimie 58: 1381–1396CrossRefGoogle Scholar
  87. Littlechild J and Garcia-Rodriguez E (2003) Structural studies on the dodecameric vanadium bromoperoxidase from Corallina species. Coordination Chem Rev 237: 65–76CrossRefGoogle Scholar
  88. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292PubMedCrossRefGoogle Scholar
  89. Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2007) Lipids in photosystem II: interaction with protein and cofactors. Biochim Biophys Acta 1767: 509–519PubMedCrossRefGoogle Scholar
  90. Manley SL and Barbero PE (2001) Physiological constraints on bromoform production by Ulva lactuca. Limnol Ocea-nogr 46: 1392–1399CrossRefGoogle Scholar
  91. Metzger P and Rager M-N (2002) Lycopanerols H, two high molecular weight ether lipids from Botryococcus braunii comprising an α-tocopherol unit. Tetrahedron Lett 43: 2377–2380CrossRefGoogle Scholar
  92. Mikhailova MV, Bemis DL, Wise ML, Gerwick WH, Nor-ris JN and Jacobs RS (1995) Structure and biosynthesis of novel conjugated polyene fatty acids from the marine green alga Anadyomene stellata. Lipids 30: 583–589PubMedCrossRefGoogle Scholar
  93. Minoda A, Sonoike K, Okada K, Sato N and Tsuzuki M (2003) Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. FEBS Lett 553: 109–112PubMedCrossRefGoogle Scholar
  94. Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Russo GL, Buttino I, Mazarella G, Laabir M, Cabrini M and Giacobbe MG (1999) The insidious effect of diatoms on copepod reproduction. Nature 402: 173–176CrossRefGoogle Scholar
  95. Mock T and Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions. II. The significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry 61: 53–60PubMedCrossRefGoogle Scholar
  96. Molina MC, Crespo A, Vicente C and Elix JA (2003) Differences in the composition of secondary metabolites and fatty acids extracted from axenically cultured mycobionts and lichenized thalli of Physconia distorta. Plant Physiol Biochem 41: 175–180CrossRefGoogle Scholar
  97. Moseley KR and Thompson GA (1980) Lipid composition and metabolism of Volvox carteri. Plant Physiol 65: 260–265PubMedCrossRefGoogle Scholar
  98. Müller DG and Eichenberger W (1994) Betaine lipid content and species delimitation in Ectocarpus, Feldmannia and Hincksia (Ectocarpales, Phaeophyceae). Eur J Phycol 29: 219–224CrossRefGoogle Scholar
  99. Napolitano GE (1994) The relationship of lipids with light and chlorophyll measurement in freshwater algae and periphyton. J Phycol 30: 943–950CrossRefGoogle Scholar
  100. Nield J, Kruse O, Ruprecht J, da Fonseca P, Büchel C and Barber J (2000) Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organisation. J Biol Chem 36: 27940–27946Google Scholar
  101. Norman HA and Thompson GA (1985) Quantitative analysis of Dunaliella salina diacylglyceryltrimethylhomoser-ine and its individual species by high performance liquid chromatography. Plant Sci 42: 83–87CrossRefGoogle Scholar
  102. Piervittori R, Alessio F and Maffei M (1994) Fatty acid variations in lipids of Xanthoria parietina. Phytochemistry 36: 853–856CrossRefGoogle Scholar
  103. Piorreck M, Baasch K-H and Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23: 207–216CrossRefGoogle Scholar
  104. Pham Thi AT, Borrel-Flood C, de Silva V, Justin, AM and Mazliak P (1987) Effects of drought on [1−14C]-oleic and [1−14C] linoleic acid desaturation in cotton leaves. Physiol Plant 69: 147–150CrossRefGoogle Scholar
  105. Plat H, Krenn BE and Wever R (1987) The bromoperoxidase from the lichen Xanthoria parietina is a novel vanadium enzyme. Biochem J 248: 277–283PubMedGoogle Scholar
  106. Pohnert G (2002) Phospholipase A2 activity triggers the wound-activated chemical defense in the diatom Thalas-siosira rotula. Plant Physiol 129: 103–111PubMedCrossRefGoogle Scholar
  107. Pohnert G (2005) Diatom/copepod interaction in plankton: the indirect chemical defense of unicellular algae. Chem-BioChem 6: 946–959Google Scholar
  108. Proteau PJ and Gerwick WH (1992) Cymathere ethers A and B: bicyclic oxylipins from the marine brown alga Cymath-ere triplicata. Tetrahedron Lett 33: 4393–4396CrossRefGoogle Scholar
  109. Proteau PJ and Gerwick WH (1993) Divinyl ethers and hydroxy fatty acids from three species of Laminaria (brown algae). Lipids 28: 783–787PubMedCrossRefGoogle Scholar
  110. Pyszniak AM and Gibbs SP (1992) Immunochemical localization of photosystem-I and the fucoxanthin-chlorophyll-a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166: 208–217CrossRefGoogle Scholar
  111. Pick U, Gounaris K, Weiss M and Barber J (1985) Tightly bound sulfolipids in chloroplast CF0-CF1. Biochim Bio-phys Acta 808: 415–420CrossRefGoogle Scholar
  112. Reis RA, Jacomini M, Gorin PAJ, de Souza LM, Grube M, Cord-eiro LMC and Sassaki GL (2005) Fatty acid composition of the tropical lichen Teloschistes flavicans and its cultivated symbionts. FEMS Microbiol Lett 247: 1–6PubMedCrossRefGoogle Scholar
  113. Renaud SM, Thinh LV, Lambrinidis G and Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian micro-algae grown in batch cultures. Aquaculture 211: 195–214CrossRefGoogle Scholar
  114. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin -IT, Kuroki Y, Toyoda A, Suzuki K, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rom-bauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu S-H, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS and Boore JL (2007) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64–69PubMedCrossRefGoogle Scholar
  115. Rezanka T and Dembitsky VM (1999a) Brominated fatty acids from lichen Acorospora gobiensis. Phytochemistry 50: 97–99CrossRefGoogle Scholar
  116. Rezanka T and Dembitsky VM (1999b) Novel brominated lipidic compounds from lichens of Central Asia. Phyto-chemistry 51: 963–968Google Scholar
  117. Ribalet F, Wichard T, Pohnert G, Ianora A, Miralto A and Casotti R (2007) Age and nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. Phytochemistry 68: 2059–2067PubMedCrossRefGoogle Scholar
  118. Ribalet F, Intertaglia L, Lebaron P and Casotti R (2008) Differential effect of three polyunsaturated aldehydes on marine bacterial isolates. Aquat Toxicol 86: 249–255PubMedCrossRefGoogle Scholar
  119. Riekhof WR, Ruckle ME, Lydic TA, Sears BB and Benning C (2003) The sulfolipids 2′-O-acyl-sulfoquinovosyldia-cylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1. Plant Physiol 133: 864–874PubMedCrossRefGoogle Scholar
  120. Roeder V, Collén J, Rousvoal S, Corre E, Leblanc C and Boyen C (2005) Identification of stress gene transcripts in Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. J Phycol 41: 1227–1235CrossRefGoogle Scholar
  121. Rontani JF, Beker B and Volkman JK (2004) Long-chain alkenones and related compounds in the bentic hapto-phyte Chrysotila lamellose Anand HAP 17. Phytochem-istry 65: 117–126CrossRefGoogle Scholar
  122. Sassaki GL, Gorin PAJ and Iacomini M (2001) Characterization of lyso-galactolipids, C-2 and C-3 O-acyl triga-lactosylglycerol isomers, obtained from the lichenized fungus Dictyonema glabratum. FEMS Microbiol Lett 194: 155–158PubMedCrossRefGoogle Scholar
  123. Sassaki GL, Gorin PAJ, Reis RA, Serrato RV, Eli'fio SL and Iacomini M (2005) Carbohydrate, glycolipid, and lipid components from the photobiont (Scytonema sp.) of the lichen, Dictyomema glabratum. Carbohydrate Res 340: 1808–1817CrossRefGoogle Scholar
  124. Sato N and Furuya M (1983) Isolation and identification of diacylglyceryl-O-4′-(N,N,N-trimethyl)-homoserine from the fern Adiantum capillus-veneris L. Plant Cell Physiol 24: 1113–1120Google Scholar
  125. Sato N, Hagio M, Wada H and Tsuzuki M (2000) Environmental effects on acidic lipids of thylakoid membranes. In: Harwood JL and Quinn PJ (eds) Recent Advances in the Biochemistry of Plant Lipids. Portland Press, London, pp. 912–914Google Scholar
  126. Sato N, Tsuzuki M and Kawaguchi A (2003) Glycerolipid synthesis in Chlorella kesslerii 11 h. I. Existence of a eukaryotic pathway. Biochim Biophys Acta 1633: 27–34PubMedCrossRefGoogle Scholar
  127. Sato N, Suda K and Tsuzuki M (2004) Responsibility of phosphatidylglycerol for biogenesis of the PSI complex. Biochim Biophys Acta 1658: 235–243PubMedCrossRefGoogle Scholar
  128. Seaward MRD (2004) The use of lichens for environmental impact assessment. Symbiosis 37: 293–305Google Scholar
  129. Senger T, Wichard T, Kunzel S, Göbel C, Lerchl J, Pohnert G and Feussner I (2005) A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. J Biol Chem 280: 7588–7596PubMedCrossRefGoogle Scholar
  130. Shiran D, Khozin I, Heimer YM and Cohen Z (1996) Biosynthesis of eicosapaentenoic acid in the microalga Por-phyridium cruentum. 1. The use of externally applied fatty acids. Lipids 31: 1277–1282PubMedCrossRefGoogle Scholar
  131. Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A and Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci USA 97: 1473–1476PubMedCrossRefGoogle Scholar
  132. Solberg YJ (1970) Studies on the chemistry of lichens. IX. The Lichenologist 4: 283–288CrossRefGoogle Scholar
  133. Sperling P, Lee M, Girke T, Zähringer U, Stymne S and Heinz E (2000) A bifunctional Δ6 fatty acyl acetylenase/ desaturase from the moss Ceratodon purpureus. Eur J Biochem 267: 3801–3811PubMedCrossRefGoogle Scholar
  134. Stratman K, Boland W and Müller DG (1993) Biosynthesis of pheromones in female gametes of marine brown algae (Phaeophyceae). Tetrahedron 49: 3755–3766CrossRefGoogle Scholar
  135. Stumpe M, Göbel C, Demchenko K, Hoffmann M, Klösgen RB, Pawlowski K and Feussner I (2006) Identification of an allene oxide synthase (CYP74C) that leads to formation of α-ketols from 9-hydroperoxides of linoleic and linolenic acid in below-ground organs of potato. Plant J 47: 883–896PubMedCrossRefGoogle Scholar
  136. Sushchik NN, Kalacheva GS, Zhila NO, Gladyshev MI and Volova TG (2003) A temperature dependence of the intra-and extracellular fatty acid composition of green algae and cyanobacterium. Russ J Plant Physiol 50: 374–380CrossRefGoogle Scholar
  137. Taylor RL, Caldwell GS, Dunstan HJ and Bentley MG (2007) Short-term impacts of polyunsaturated aldehyde-producing diatoms on the harpacticoid Tisbe holothuriae. J Exp Mar Biol Ecol 341: 60–69CrossRefGoogle Scholar
  138. Ten Brink HB, Schoemaker HE and Wever R (2001) Sul-foxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum: evidence for direct oxygen transfer catalysis. Eur J Biochem 268: 132–138PubMedCrossRefGoogle Scholar
  139. Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302: 17–45PubMedCrossRefGoogle Scholar
  140. Toledo-Marante FJ, Castellano G, Estevez Rosas F, Quintana Aguiar J and Bermejo-Barrera J (2003) Identification and quantification of allelochemicals from the lichen Lethariella canariensis: phytotoxicity and antioxidative activity. J Chem Ecol 29: 2049–2071PubMedCrossRefGoogle Scholar
  141. Tonon T, Larson TR and Graham IA (2002) Long chain poly-unsaturated fatty acid production and partitioning to tria-cylglycerols in four microalgae. Phytochemistry 61: 15–24PubMedCrossRefGoogle Scholar
  142. Torres A, Dor I, Rotem J, Srebnik M and Dembitsky VM (2003) Characterization of surface n-alkanes and fatty acids of the epiphytic lichen Xanthoria parietina, its pho-tobiont a green alga Trebouxia sp., and its mycobiont, from the Jerusalem hills. Eur J Biochem 270: 2120–2125PubMedCrossRefGoogle Scholar
  143. Van den Brink-van der Laan E, Killian JA and de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666: 275–288PubMedCrossRefGoogle Scholar
  144. Van der Rest B, Boisson A-M, Gout E, Bligny R and Douce R (2002) Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol 130: 244–255PubMedCrossRefGoogle Scholar
  145. Vieler A, Wilhelm C, Goss R, Süss R and Schiller J (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella menghiniana investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150: 143–155PubMedCrossRefGoogle Scholar
  146. Vieler A, Scheidt HA, Schmidt P, Montag C, Nowoisky JF, Lohr M, Wilhelm C, Huster D and Goss R (2008) The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase. Bio-chim Biophys Acta 1778: 1027–1034CrossRefGoogle Scholar
  147. Watanabe T, Kitajima C and Fujita S (1983) Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34: 115–143CrossRefGoogle Scholar
  148. Weissman L, Fraiberg M, Shine L, Garty J and Hochman A (2006) Responses of antioxidants in the lichen Ramalina lacera may serve as an early-warning bio-indicator system for the detection of air pollution stress. FEMS Micro-biol Ecol 58: 41–53CrossRefGoogle Scholar
  149. Wichard T and Pohnert G (2006) Formation of halogenated medium chain hydrocarbons by lipoxygenase/hydroper-oxide halolyase-mediated transformation in planktonic microalgae. J Am Chem Soc 128: 7114–7115PubMedCrossRefGoogle Scholar
  150. Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, LaRoche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K and Kroth PG (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 151: 91–124CrossRefGoogle Scholar
  151. Yotsu-Yamashita M, Haddock RL and Yasumoto T (1993) Polycavernoside A: a novel glycosidic macrolide from the red alga Polycavernosa tsudai (Gracilaria edulis). J Am Chem Soc 115: 1147–1148CrossRefGoogle Scholar
  152. Zank T, Zähringer U, Lerchl J and Heinz E (2002a) Cloning and functional expression for the first plant fatty acid elongase specific for Δ6-polyunsaturated fatty acids. Bio-chem Soc Trans 28: 654–658CrossRefGoogle Scholar
  153. Zank T, Zähringer U, Beckmann C, Pohnert G, Boland W, Holtorf H, Reski R, Lerchl J and Heinz E (2002b) Cloning and functional characterisation of an enzyme involved in the elongation of Δ6-polyunsaturated fatty acids from the moss Physcomitrella patens. Plant J l31: 255–268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Plant PhysiologyUniversity of Leipzig, Institute of Biology ILeipzigGermany

Personalised recommendations