Plant Sphingolipids: Structure, Synthesis and Function

  • Ming Chen
  • Edgar B. CahoonEmail author
  • Mariana Saucedo-García
  • Javier Plasencia
  • Marina Gavilanes-Ruíz
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 30)


Sphingolipids are major structural components of endomembranes and dynamic regulators of basic cellular processes in plants. Advances during the past decade have revealed that sphingolipids are essential molecules in plants, and many of the genes for sphingolipid biosynthetic enzymes have been identified and characterized. In addition, improved methods for sphingolipid extraction and analysis have uncovered the immense structural complexity and quantitative importance of sphingolipids in plant cells. These advanced analytical methods have also been increasingly applied to the characterization of Arabidopsis thaliana mutants to provide unexpected insights into sphingolipid metabolism and function. Complementing these studies is a growing awareness that sphingolipids are one of the most abundant lipid components of the plasma membrane of plant cells and may play a role in the organization and function of membrane microdomains that are important for cell surface activities and for trafficking of proteins to the plasma membrane. Furthermore, sphingolipid metabolites including free and phosphorylated forms of long-chain bases and ceramides have been linked as bioactive regulators to a number of cellular processes (e.g., programmed cell death) that are important for abiotic stress resistance, plant development, and plant—pathogen interactions. This review provides a synopsis of the rapidly progressing field of plant sphingolipid biology and highlights gaps in our knowledge of the metabolism and function of these molecules in plants.


Arabidopsis Thaliana Sphingolipid Metabolism Fatty Acid Elongation Sphingolipid Synthesis Serine Palmitoyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Abscisic acid


Accelerated cell death


Acyl carrier protein


Alternaria alternata f. sp. lycopersici


Bile acid β-glucosidase


Detergent-resistant membranes


Endoplas-mic reticulum


Fatty acid thioesterase B




Glycolipid transfer protein


Glycosyl inositolphosphoceramide


Hypersensitive response




Liquid-disordered phase


Liquid-ordered phase


Long-chain base


Long-chain base-1-phosphate


Melting temperature






RNA interference


Serine palmitoyltransferase


Sphinganine (dihydro sphingosine)


Sphingosine kinase


Very long-chain fatty acid


4-Hydroxysphinganine (phytosphingosine)






Δ4trans-sphingenine (sphingosine)

d18: 1Δ8trans










We thank Rebecca Cahoon for editing of the text. We also thank the Consejo Nacional de Ciencia y Tecnología (CONACYT), México (grant 55610) and Universidad Nacional Autónoma de México (UNAM) (grants DGAPA PAPIIT-IN207806 and PAIP 0690-2) for financial support to MGR, CONACYT (grant 50503Z) for financial support to JP, and the United States National Science Foundation (MCB-0312559, MCB-0843312) for financial support to EBC. MSG is supported by a fellowship from Consejo Nacional de Ciencia y Tecnología (CONACYT), México.


  1. Abbas HK, Paul RN, Boyette CD, Duke SO and Vesonder RF (1992) Physiological and ultrastructural effects of fumonisin on jimsonweed leaves. Can J Bot 70: 1824–1833CrossRefGoogle Scholar
  2. Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH Jr and Riley RT (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106: 1085–1093PubMedGoogle Scholar
  3. Allende D, Vidal A and McIntosh TJ (2004) Jumping to rafts: gatekeeper role of bilayer elasticity. Trends Bio-chem Sci 29: 325–330CrossRefGoogle Scholar
  4. Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J and Ausubel FM (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12: 1823–1835PubMedGoogle Scholar
  5. Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA and Faure JD (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci USA 105: 14727–14731PubMedCrossRefGoogle Scholar
  6. Bagnat M, Keränen S, Shevchenko A and Simons K (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 97: 3254–3259PubMedCrossRefGoogle Scholar
  7. Barz WP and Walter P (1999) Two endoplasmic reticulum (ER) membrane proteins that facilitate ER-to-Golgi transport of glycosylphosphatidylinositol-anchored proteins. Mol Biol Cell 10: 1043–1059PubMedGoogle Scholar
  8. Beaudoin F, Gable K, Sayanova O, Dunn T and Napier JA (2002) A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a micro-somal β-keto-reductase. J Biol Chem 277: 11481–11488PubMedCrossRefGoogle Scholar
  9. Beckmann C, Rattke J, Oldham NJ, Sperling P, Heinz E and Boland W (2002) Characterization of a Δ8-sphingoli-pid desaturase from higher plants: a stereochemical and mechanistic study on the origin of E,Z isomers. Angew Chem Int Ed 41: 2298–2300CrossRefGoogle Scholar
  10. Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H and Dunn T (1998) The Saccharomyces cerevi-siae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. J Biol Chem 273: 30688–30694PubMedCrossRefGoogle Scholar
  11. Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P and Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102: 3135–3140PubMedCrossRefGoogle Scholar
  12. Binder HW, Barragan V and Menger FM (2003) Domains and rafts in lipid membranes. Angew Chem Int Ed 42: 5802–5827CrossRefGoogle Scholar
  13. Blacklock BJ and Jaworski JG (2006) Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem Bio-phys Res Commun 346: 583–590CrossRefGoogle Scholar
  14. Bonaventure G, Salas JJ, Pollard MR and Ohlrogge JB (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 15: 1020–1033PubMedCrossRefGoogle Scholar
  15. Boot RG, Verhoek M, Donker-Koopman W, Strijland A, van Marle J, Overkleeft HS, Wennekes T and Aerts JM (2007) Identification of the non-lysosomal glucosylceramidase as β-glucosidase 2. J Biol Chem 282: 1305–1312PubMedCrossRefGoogle Scholar
  16. Borner GH, Sherrier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS and Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137: 104–116PubMedCrossRefGoogle Scholar
  17. Brady RO, Kanfer J and Shapiro D (1965) The metabolism of glucocerebrosides. I. Purification and properties of a glucocerebroside-cleaving enzyme from spleen tissue. J Biol Chem 240: 39–43PubMedGoogle Scholar
  18. Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, Hille J and Nijkamp HJJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA 97: 4961–4966PubMedCrossRefGoogle Scholar
  19. Brandwagt BF, Kneppers TJA, Nijkamp HJJ and Hille J (2002) Overexpression of the tomato Asc-1 gene mediates high insensitivity to AAL toxins and fumonisin B1 in tomato hairy roots and confers resistance to Alternaria alternata f. sp. lycopersici in Nicotiana umbratica plants. Mol Plant-Microb Interact 15: 35–42CrossRefGoogle Scholar
  20. Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jorgensen LB, Brown RE and Mundy J (2002) Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encod- ing a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16: 490–502PubMedCrossRefGoogle Scholar
  21. Bromley PE, Li YO, Murphy SM, Sumner CM and Lynch DV (2003) Complex sphingolipid synthesis in plants: characterization of inositolphosphorylceramide synthase activity in bean microsomes. Arch Biochem Biophys 417: 219–226PubMedCrossRefGoogle Scholar
  22. Brown DA and London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14: 111–136PubMedCrossRefGoogle Scholar
  23. Brown RE (1998) Sphingolipid organization in biomem-branes: what physical studies of model membranes reveal. J Cell Sci 111: 1–9PubMedGoogle Scholar
  24. Cahoon EB and Lynch DV (1991) Analysis of glucocerebro-sides of rye (Secale cereale L. cv Puma) leaf and plasma membrane. Plant Physiol 95: 58–68PubMedCrossRefGoogle Scholar
  25. Camara-Artigas A, Brune D and Allen JP (2002) Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci USA 99: 11055–11060PubMedCrossRefGoogle Scholar
  26. Carter HE and Koob JL (1969) Sphingolipids in bean leaves (Phaseolus vulgaris). J Lipid Res 10: 363–369PubMedGoogle Scholar
  27. Carter HE, Celmer WD, Galanos DS, Gigg RH, Lands WEM, Law JH, Mueller KL, Nakayama T, Tomizawa HH and Weber E (1958a) Biochemistry of the sphingoli-pides. X. Phytoglycolipide, a complex phytosphingosine-containing lipide from plant seeds. J Amer Oil Chem Soc 35: 335–343CrossRefGoogle Scholar
  28. Carter HE, Gigg RH, Law JH, Nakayama T and Weber E (1958b) Biochemistry of the sphingolipides. XI. Structure of phytoglycolipide. J Biol Chem 233: 1309–1314Google Scholar
  29. Carter HE, Hendry RA, Nojima S and Stanacev NZ (1960) The isolation and structure of cerebrosides from wheat flour. Biochim Biophys Acta 45: 402–404PubMedCrossRefGoogle Scholar
  30. Carter HE, Hendry RA, Nojima S, Stanacev NZ and Ohno K (1961) Biochemistry of the sphingolipids. XIII. Determination of the structure of cerebrosides from wheat flour. J Biol Chem 236: 1912–1916PubMedGoogle Scholar
  31. Chen M, Han G, Dietrich CR, Dunn TM and Cahoon EB (2006) The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyl-transferase. Plant Cell 12: 3576–3593Google Scholar
  32. Chen M, Markham JE, Dietrich CR, Jaworski JG and Cahoon EB (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20: 1862–1878PubMedCrossRefGoogle Scholar
  33. Costaglioli P, Joubes J, Garcia C, Stef M, Arveiler B, Lessire R and Garbay B (2005) Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microar-ray analysis. Biochim Biophys Acta 1734: 247–258PubMedCrossRefGoogle Scholar
  34. Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S and Assmann SM (2003) Sphingolipid signalling in Arabi-dopsis guard cells involves heterotrimeric G proteins. Nature 423: 651–654PubMedCrossRefGoogle Scholar
  35. Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM and Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137: 724–737PubMedCrossRefGoogle Scholar
  36. Crowther GJ and Lynch DV (1997) Characterization of sph-inganine kinase activity in corn shoot microsomes. Arch Biochem Biophys 337: 284–290PubMedCrossRefGoogle Scholar
  37. Curatolo W (1987) The physical properties of glycolipids. Biochim Biophys Acta 906: 111–136PubMedCrossRefGoogle Scholar
  38. Denic V and Weissman JS (2007) A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130: 663–677PubMedCrossRefGoogle Scholar
  39. Denny PW, Shams-Eldin H, Price HP, Smith DF and Schwarz RT (2006) The protozoan inositol phosphorylceramide synthase: a novel drug target that defines a new class of sphingolipid synthase. J Biol Chem 281: 28200–28209PubMedCrossRefGoogle Scholar
  40. Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB and Lester RL (1997) Sphingolipids are potential heat stress signals in Saccharomyces. J Biol Chem 272: 30196–30200PubMedCrossRefGoogle Scholar
  41. Dietrich CR, Perera MA, M DY-N, Meeley RB, Nikolau BJ and Schnable PS (2005) Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Plant J 42: 844–861PubMedCrossRefGoogle Scholar
  42. Dietrich CR, Han G, Chen M, Berg RH, Dunn TM and Cahoon EB (2008) Loss-of-function mutations and induc-ible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and spo-rophytic cell viability. Plant J 54: 284–298PubMedCrossRefGoogle Scholar
  43. D'Mello NP, Childress AM, Franklin DS, Kale SP, Pin-swasdi C and Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269: 15451–15459PubMedGoogle Scholar
  44. Duan RD (2006) Alkaline sphingomyelinase: an old enzyme with novel implications. Biochim Biophys Acta 1761: 281–291PubMedCrossRefGoogle Scholar
  45. Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan J, Nelander S, Palmberg C and Nilsson A (2003a) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodi-esterase family. J Biol Chem 278: 38528–38536CrossRefGoogle Scholar
  46. Duan RD, Cheng Y, Hansen G, Hertervig E, Liu JJ, Syk I, Sjostrom H and Nilsson A (2003b) Purification, localization, and expression of human intestinal alkaline sphingo-myelinase. J Lipid Res 44: 1241–1250CrossRefGoogle Scholar
  47. Dunn TM, Lynch DV, Michaelson LV and Napier JA (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot (Lond) 93: 483–497CrossRefGoogle Scholar
  48. Edidin M (2003) Lipid on the frontier: a century of cell-membrane bilayers. Nature Rev Mol Cell Biol 4: 414–418CrossRefGoogle Scholar
  49. El Bawab S, Roddy P, Qian T, Bielawska A, Lemasters JJ and Hannun YA (2000) Molecular cloning and characterization of a human mitochondrial ceramidase. J Biol Chem 275: 21508–21513PubMedCrossRefGoogle Scholar
  50. El Bawab S, Birbes H, Roddy P, Szulc ZM, Bielawska A and Hannun YA (2001) Biochemical characterization of the reverse activity of rat brain ceramidase. A CoA-inde-pendent and fumonisin B1-insensitive ceramide synthase. J Biol Chem 276: 16758–16766PubMedCrossRefGoogle Scholar
  51. Fantini J (2003) How sphingolipids bind and shape proteins: molecular basis of protein-lipid interactions in lipid shells, rafts and related biomembrane domains. Cell Mol Life Sci 60: 1027–1032PubMedGoogle Scholar
  52. Ferlinz K, Kopal G, Bernardo K, Linke T, Bar J, Breiden B, Neumann U, Lang F, Schuchman EH and Sandhoff K (2001) Human acid ceramidase: processing, glycosyla-tion, and lysosomal targeting. J Biol Chem 276: 35352–35360PubMedCrossRefGoogle Scholar
  53. Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL and Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12: 2001–2008PubMedGoogle Scholar
  54. Funato K, Lombardi R, Vallee B and Riezman H (2003) Lcb4p is a key regulator of ceramide synthesis from exogenous long chain sphingoid base in Saccharomyces cerevisiae. J Biol Chem 278: 7325–7334PubMedCrossRefGoogle Scholar
  55. Futerman AH (2006) Intracellular trafficking of sphingoli-pids: relationship to biosynthesis. Biochim Biophys Acta 1758: 1885–1892PubMedCrossRefGoogle Scholar
  56. Gable K, Han G, Monaghan E, Bacikova D, Natarajan M, Williams R and Dunn TM (2002) Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, domi-nantly inactivate serine palmitoyltransferase. J Biol Chem 277: 10194–10200PubMedCrossRefGoogle Scholar
  57. Gable K, Garton S, Napier JA and Dunn TM (2004) Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J Exp Bot 55: 543–545PubMedCrossRefGoogle Scholar
  58. Galadari S, Wu BX, Mao C, Roddy P, El Bawab S and Han-nun YA (2006) Identification of a novel amidase motif in neutral ceramidase. Biochem J 393: 687–695PubMedCrossRefGoogle Scholar
  59. Garmy N, Taïeb N, Yahi N and Fantini J (2005) Apical uptake and transepithelial transport of sphingosine monomers through intact human intestinal epithelial cells: physicochemical and molecular modeling studies. Arch Biochem Biophys 440: 91–100PubMedCrossRefGoogle Scholar
  60. Gilchrist DG and Grogan RG (1976) Production and nature of a host-specific toxin from Alternaria alternata f. sp. lycopersici. Phytopathology 66: 165–171CrossRefGoogle Scholar
  61. Glenn AE, Zitomer NC, Zimeri AM, Williams LD, Riley RT and Proctor RH (2008) Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant-Microb Interact 21: 87–97CrossRefGoogle Scholar
  62. Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sij-mons PC, Woodward FI, Schuch W and Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408: 713–716PubMedCrossRefGoogle Scholar
  63. Greenberg JT, Silverman FP and Liang H (2000) Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics 156: 341–350PubMedGoogle Scholar
  64. Grennan AK (2007) Lipid rafts in plants. Plant Physiol 143: 1083–1085PubMedCrossRefGoogle Scholar
  65. Grilley MM, Stock SD, Dickson RC, Lester RL and Take-moto JY (1998) Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J Biol Chem 273: 11062–11068PubMedCrossRefGoogle Scholar
  66. Guillas I, Kirchman PA, Chuard R, Pfefferli M, Jiang JC, Jazwinski SM and Conzelmann A (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cer-evisiae is operated by Lag1p and Lac1p. EMBO J 20: 2655–2665PubMedCrossRefGoogle Scholar
  67. Haak D, Gable K, Beeler T and Dunn T (1997) Hydroxy-lation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem 272: 29704–29710PubMedCrossRefGoogle Scholar
  68. Hait NC, Fujita K, Lester RL and Dickson RC (2002) Lcb4p sphingoid base kinase localizes to the Golgi and late endo-somes. FEBS Lett 532: 97–102PubMedCrossRefGoogle Scholar
  69. Han G, Gable K, Yan L, Natarajan M, Krishnamurthy J, Gupta SD, Borovitskaya A, Harmon JM and Dunn TM (2004) The topology of the Lcb1p subunit of yeast serine palmitoyltransferase. J Biol Chem 279: 53707–53716PubMedCrossRefGoogle Scholar
  70. Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632: 16–30PubMedCrossRefGoogle Scholar
  71. Hanada K, Kumagai K, Tomishige N and Kawano M (2007) CERT and intracellular trafficking of ceramide. Biochim Biophys Acta 1771: 644–653PubMedCrossRefGoogle Scholar
  72. Haschke H-P, Kaiser G, Martinoia E, Hammer U, Teucher T, Dorne AJ and Heinz E (1990) Lipid profiles of leaf tonoplasts from plants with different CO2-fixation mechanisms. Bot Acta 103: 32–38Google Scholar
  73. Hearn JD, Lester RL and Dickson RC (2003) The uracil transporter Fur4p associates with lipid rafts. J Biol Chem 278: 3679–3686PubMedCrossRefGoogle Scholar
  74. Hering H, Lin C-C and Sheng M (2003) Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 23: 3262–3271PubMedGoogle Scholar
  75. Hillig I, Leipelt M, Ott C, Zahringer U, Warnecke D and Heinz E (2003) Formation of glucosylceramide and sterol glucoside by a UDP-glucose-dependent glucosylceramide synthase from cotton expressed in Pichia pastoris. FEBS Lett 553: 365–369PubMedCrossRefGoogle Scholar
  76. Ho MW and O'Brien JS (1971) Gaucher's disease: deficiency of ‘acid’ β-glucosidase and reconstitution of enzyme activity in vitro. Proc Natl Acad Sci USA 68: 2810–2813PubMedCrossRefGoogle Scholar
  77. Imai H and Nishiura H (2005) Phosphorylation of sphingoid long-chain bases in Arabidopsis: functional characterization and expression of the first sphingoid long-chain base kinase gene in plants. Plant Cell Physiol 46: 375–380PubMedCrossRefGoogle Scholar
  78. Imai H, Yamamoto K, Shibahara A, Miyatani S and Nakayama T (2000) Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chroma-tography-mass spectrometry. Lipids 35: 233–236PubMedCrossRefGoogle Scholar
  79. Imamura T, Kusano H, Kajigaya Y, Ichikawa M and Shi-mada H (2007) A rice dihydrosphingosine C4 hydroxylase (DSH1) gene, which is abundantly expressed in stigmas, vascular cells and apical meristem, may be involved in fertility. Plant Cell Physiol 48: 3569–3575CrossRefGoogle Scholar
  80. Johnson KR, Johnson KY, Becker KP, Bielawski J, Mao C and Obeid LM (2003) Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J Biol Chem 278: 34541–34547PubMedCrossRefGoogle Scholar
  81. Jones JDG and Dangl JL (2006) The plant immune system. Nature 444: 323–329PubMedCrossRefGoogle Scholar
  82. Joubes J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F and Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thal-iana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67: 547–566PubMedCrossRefGoogle Scholar
  83. Kaul K and Lester RL (1975) Characterization of inositol-containing phosphosphingolipids from tobacco leaves: isolation and identification of two novel, major lipids: N-acetylglucosamidoglucuronidoinositol phosphorylce-ramide and glucosamidoglucuronidoinositol phosphoryl-ceramide. Plant Physiol 55: 120–129PubMedCrossRefGoogle Scholar
  84. Kaul K and Lester RL (1978) Isolation of six novel phosph-oinositol-containing sphingolipids from tobacco leaves. Biochemistry 17: 3569–3575PubMedCrossRefGoogle Scholar
  85. Kaya K, Ramesha CS and Thompson GA Jr (1984) On the formation of α-hydroxy fatty acids. Evidence for a direct hydroxylation of nonhydroxy fatty acid-containing sphin-golipids. J Biol Chem 259: 3548–3553Google Scholar
  86. Kihara A, Kurotsu F, Sano T, Iwaki S and Igarashi Y (2005) Long-chain base kinase Lcb4 is anchored to the membrane through its palmitoylation by Akr1. Mol Cell Biol 25: 9189–9197PubMedCrossRefGoogle Scholar
  87. Kim S, Fyrst H and Saba J (2000) Accumulation of phos-phorylated sphingoid long chain bases results in cell growth inhibition in Saccharomyces cerevisiae. Genetics 156: 1519–1529PubMedGoogle Scholar
  88. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118: 7–18PubMedCrossRefGoogle Scholar
  89. Koch J, Gartner S, Li CM, Quintern LE, Bernardo K, Levran O, Schnabel D, Desnick RJ, Schuchman EH and Sandhoff K (1996) Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceram-idase. Identification of the first molecular lesion causing Farber disease. J Biol Chem 271: 33110–33115PubMedCrossRefGoogle Scholar
  90. Koga J, Yamauchi T, Shimura M, Ogawa N, Oshima K, Umemura K, Kikuchi M and Ogasawara N (1998) Cere-brosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J Biol Chem 273: 31985–31991PubMedCrossRefGoogle Scholar
  91. Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S, Nishijima M, Hanada K and Kato R (2008) Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci USA 105: 488–493PubMedCrossRefGoogle Scholar
  92. Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M and Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J Biol Chem 280: 32914–32920PubMedCrossRefGoogle Scholar
  93. Lafont F, Abrami L and van der Goot F (2004) Bacterial subversion of lipid rafts. Curr Opin Microbiol 7: 4–10PubMedCrossRefGoogle Scholar
  94. Laloi M, Perret A-M, Chatre L, Melser S, Cantrel C, Vaultier M-N, Zachowski A, Bathany K, Schmitter J-M, Vallet M, Lessire R, Hartmann M-A and Moreau P (2007) Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiol 43: 461–472Google Scholar
  95. Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R, Botti J and Codogno P (2006) Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J Biol Chem 281: 8518–8527PubMedCrossRefGoogle Scholar
  96. Le Stunff H, Galve-Roperh I, Peterson C, Milstien S and Spiegel S (2002a) Sphingosine-1-phosphate phospho-hydrolase in regulation of sphingolipid metabolism and apoptosis. J Cell Biol 158: 1039–1049CrossRefGoogle Scholar
  97. Le Stunff H, Peterson C, Liu H, Milstien S and Spiegel S (2002b) Sphingosine-1-phosphate and lipid phosphohy-drolases. Biochim Biophys Acta 1582: 8–17CrossRefGoogle Scholar
  98. Le Stunff H, Peterson C, Thornton R, Milstien S, Mandala SM and Spiegel S (2002c) Characterization of murine sphingosine-1-phosphate phosphohydrolase. J Biol Chem 277: 8920–8927CrossRefGoogle Scholar
  99. Lefebvre B, Furt F, Hartmann M-A, Michaelson LV, Carde J-P, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule J-J and Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144: 402–418PubMedCrossRefGoogle Scholar
  100. Leipelt M, Warnecke D, Zahringer U, Ott C, Muller F, Hube B and Heinz E (2001) Glucosylceramide syn-thases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J Biol Chem 276: 33621–33629PubMedCrossRefGoogle Scholar
  101. Levine TP, Wiggins CA and Munro S (2000) Inositol phos-phorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae. Mol Biol Cell 11: 2267–2281PubMedGoogle Scholar
  102. Liang H, Yao N, Song JT, Luo S, Lu H and Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17: 2636–2641PubMedCrossRefGoogle Scholar
  103. Liang X, Nazarenus TJ and Stone JM (2008) Identification of a consensus DNA-binding site for the Arabidopsis thaliana SBP domain transcription factor, AtSPL14, and binding kinetics by surface plasmon resonance. Biochemistry 47: 3645–3653PubMedCrossRefGoogle Scholar
  104. Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T and Shimamoto K (2005) A sphingolipid elicitor-induc-ible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiol 138: 1644–1652PubMedCrossRefGoogle Scholar
  105. Lin SS, Martin R, Mongrand S, Vandenabeele S, Chen KC, Jang IC and Chua NH (2008) RING1 E3 ligase localizes to plasma membrane lipid raft to trigger FB1-induced programmed cell death in Arabidopsis. Plant J 56: 550–561PubMedCrossRefGoogle Scholar
  106. Lingwood D and Simons K (2007) Detergent resistance as a tool in membrane research. Nat Protoc 2: 2159–2165PubMedCrossRefGoogle Scholar
  107. Liu H, Sugiura M, Nava VE, Edsall LC, Kono K, Poulton S, Milstien S, Kohama T and Spiegel S (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275: 19513–19520PubMedCrossRefGoogle Scholar
  108. Liu H, Chakravarty D, Maceyka M, Milstien S and Spiegel S (2002) Sphingosine kinases: a novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol 71: 493–511PubMedCrossRefGoogle Scholar
  109. Liu Y, Schiff M, Czymmek K, Tallocczy Z, Levine B and Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during plant innate immune response. Cell 121: 567–577PubMedCrossRefGoogle Scholar
  110. Liu Y, Ren D, Pike S, Pallardy S, Gassmann W and Zhang S (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51: 941–954PubMedCrossRefGoogle Scholar
  111. London E (2002) Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol 12: 480–486PubMedCrossRefGoogle Scholar
  112. Long SB, Tao X, Campbell EB and MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376–382PubMedCrossRefGoogle Scholar
  113. Lynch DV and Dunn TM (2004) An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytol 161: 677–702CrossRefGoogle Scholar
  114. Lynch DV and Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 83: 761–767PubMedCrossRefGoogle Scholar
  115. Mandala SM, Thornton RA, Rosenbach M, Milligan J, Garcia-Calvo M, Bull HG and Kurtz MB (1997) Khafre-fungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem 272: 32709–32714PubMedCrossRefGoogle Scholar
  116. Mandala SM, Thornton R, Tu Z, Kurtz MB, Nickels J, Broach J, Menzeleev R and Spiegel S (1998a) Sphingoid base 1-phosphate phosphatase: a key regulator of sphin-golipid metabolism and stress response. Proc Natl Acad Sci USA 95: 150–155CrossRefGoogle Scholar
  117. Mandala SM, Thornton RA, Milligan J, Rosenbach M, Garcia-Calvo M, Bull HG, Harris G, Abruzzo GK, Flattery AM, Gill CJ, Bartizal K, Dreikorn S and Kurtz MB (1998b) Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide syn-thase. J Biol Chem 273: 14942–14949CrossRefGoogle Scholar
  118. Mandala SM, Thornton R, Galve-Roperh I, Poulton S, Peterson C, Olivera A, Bergstrom J, Kurtz MB and Spiegel S (2000) Molecular cloning and characterization of a lipid phosphohy- drolase that degrades sphingosine-1-phosphate and induces cell death. Proc Natl Acad Sci USA 97: 7859–7864PubMedCrossRefGoogle Scholar
  119. Mañes S, del Real G and Martínez-AC (2003) Pathogens: raft hijackers. Nature Rev Immunol 3: 557–568CrossRefGoogle Scholar
  120. Mao C, Wadleigh M, Jenkins GM, Hannun YA and Obeid LM (1997) Identification and characterization of Sac-charomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem 272: 28690–28694PubMedCrossRefGoogle Scholar
  121. Mao C, Saba JD and Obeid LM (1999) The dihydrosphingo-sine-1-phosphate phosphatases of Saccharomyces cerevi-siae are important regulators of cell proliferation and heat stress responses. Biochem J 342: 667–675PubMedCrossRefGoogle Scholar
  122. Mao C, Xu R, Bielawska A and Obeid LM (2000a) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem 275: 6876–6884Google Scholar
  123. Mao C, Xu R, Bielawska A, Szulc ZM and Obeid LM (2000b) Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihy-droceramide. J Biol Chem 275: 31369–31378CrossRefGoogle Scholar
  124. Marchesini N and Hannun YA (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 82: 27–44PubMedCrossRefGoogle Scholar
  125. Markham JE and Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21: 1304–1314PubMedCrossRefGoogle Scholar
  126. Markham JE, Li J, Cahoon EB and Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281: 22684–22694PubMedCrossRefGoogle Scholar
  127. Massey JB (2001) Interaction of ceramides with phosphati-dylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochim Biophys Acta 1510: 167–184PubMedCrossRefGoogle Scholar
  128. Matmati N and Hannun YA (2008) Thematic review series: sphingolipids. ISC1 (inositol phosphosphingolipid-phos-pholipase C), the yeast homologue of neutral sphingomy-elinases. J Lipid Res 49: 922–928PubMedCrossRefGoogle Scholar
  129. Mayor S and Rao M (2004) Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5: 231–240PubMedCrossRefGoogle Scholar
  130. Michaelson LV, Zauner S, Markham JE, Halsam R, Mug-ford R, Albrecht S, Warnecke D, Sperling P, Heinz E and Napier JA (2009) Functional characterisation of a higher plant sphingolipid Δ4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis thaliana. Plant Physiol 149: 487–498PubMedCrossRefGoogle Scholar
  131. Mitchell AG and Martin CE (1997) Fah1p, a Saccharomy-ces cerevisiae cytochrome b5 fusion protein, and its Ara-bidopsis thaliana homolog that lacks the cytochrome b5 domain both function in the α-hydroxylation of sphingol-ipid-associated very long chain fatty acids. J Biol Chem 272: 28281–28288PubMedCrossRefGoogle Scholar
  132. Mizutani Y, Kihara A and Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390: 263–271PubMedCrossRefGoogle Scholar
  133. Mongrand S, Morel J, Laroche J, Claverol S, Carde J-P, Hartmann M-A, Bonneu M, Simon-Plas F, Lessire R and Bessoule J-J (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279: 36277–36286PubMedCrossRefGoogle Scholar
  134. Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bes-soule J-J, Blein J-P and Simon-Plas F (2006) Proteomics of plant detergent resistant membranes. Mol Cell Pro-teomic 5: 1396–1411CrossRefGoogle Scholar
  135. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115: 377–388PubMedCrossRefGoogle Scholar
  136. Nagiec MM, Nagiec EE, Baltisberger JA, Wells GB, Lester RL and Dickson RC (1997) Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inosi-tol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272: 9809–9817PubMedCrossRefGoogle Scholar
  137. Nagiec MM, Skrzypek M, Nagiec EE, Lester RL and Dickson RC (1998) The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem 273: 19437–19442PubMedCrossRefGoogle Scholar
  138. Ng C-Y, Carr K, McAinsh MR, Powell B and Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410: 596–599PubMedCrossRefGoogle Scholar
  139. Niu Y, Chen K, Wang J, Liu X, Qin H, Zhang A and Wang D (2007) Molecular and functional characterization of sphingosine-1-phosphate lyase homolog from higher plants. J Integ Plant Biol 49: 323–335CrossRefGoogle Scholar
  140. Ohlsson L, Palmberg C, Duan RD, Olsson M, Bergman T and Nilsson A (2007) Purification and characterization of human intestinal neutral ceramidase. Biochimie 89: 950–960PubMedCrossRefGoogle Scholar
  141. Ohvo-Rekilä H, Ramstedt B, Leppimäki P and Slotte JP (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41: 66–97PubMedCrossRefGoogle Scholar
  142. Omae F, Miyazaki M, Enomoto A, Suzuki M, Suzuki Y and Suzuki A (2004) DES2 protein is responsible for phytoce-ramide biosynthesis in the mouse small intestine. Bio-chem J 379: 687–695Google Scholar
  143. Oxley D and Bacic A (1999) Structure of the glycosylphos-phatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proc Natl Acad Sci USA 96: 14246–14251PubMedCrossRefGoogle Scholar
  144. Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455: 433–451CrossRefGoogle Scholar
  145. Pascher I and Sundell S (1977) Molecular arrangements in sphingolipids. The crystal structure of cerebroside. Chem Phys Lipids 20: 175–191CrossRefGoogle Scholar
  146. Pata MO, Wu BX, Bielawski J, Xiong TC, Hannun YA and Ng CK (2008) Molecular cloning and characterization of OsCDase, a ceramidase enzyme from rice. Plant J 55: 1000–1009PubMedCrossRefGoogle Scholar
  147. Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA and Dunn TM (2006) Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem 281: 9018–9029PubMedCrossRefGoogle Scholar
  148. Paulick MG and Bertozzi CR (2008) The glycosylphos-phatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47: 6991–7000PubMedCrossRefGoogle Scholar
  149. Peskan T, Westermann M and Oelmüller R (2000) Identification of low-density Triton X-100-insoluble plasma membrane microdomains in higher plants. Eur J Biochem 267: 6989–6995PubMedCrossRefGoogle Scholar
  150. Pewzner-Jung Y, Ben-Dor S and Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (cera-mide synthases)? Insights into the regulation of ceramide synthesis. J Biol Chem 281: 25001–25005PubMedCrossRefGoogle Scholar
  151. Qie L, Nagiec MM, Baltisberger JA, Lester RL and Dickson RC (1997) Identification of a Saccharomyces gene, LCB3, necessary for incorporation of exogenous long chain bases into sphingolipids. J Biol Chem 272: 16110–16117PubMedCrossRefGoogle Scholar
  152. Ramstedt B and Slotte JP (2006) Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Biophys Acta 1758: 1945–1956PubMedCrossRefGoogle Scholar
  153. Riethmuller J, Riehle A, Grassme H and Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758: 2139–2147PubMedCrossRefGoogle Scholar
  154. Ryan PR, Liu Q, Sperling P, Dong B, Franke S and Del-haize E (2007) A higher plant Δ8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol 144: 1968–1977PubMedCrossRefGoogle Scholar
  155. Saba JD, Nara F, Bielawska A, Garrett S and Hannun YA (1997) The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J Biol Chem 272: 26087–26090PubMedCrossRefGoogle Scholar
  156. Sastry PS and Kates M (1964) Lipid components of leaves. V. Galactolipids, cerebrosides, and lecithin of runner-bean leaves. Biochemistry 3: 1271–1280Google Scholar
  157. Sawai H, Okamoto Y, Luberto C, Mao C, Bielawska A, Domae N and Hannun YA (2000) Identification of ISC1 (YER019w) as inositol phosphosphingolipid phospholi-pase C in Saccharomyces cerevisiae. J Biol Chem 275: 39793–39798PubMedCrossRefGoogle Scholar
  158. Scarlatti F, Bauvy C, Ventrutti A, Sala G, Cluzeaud F, Vandewalle A, Ghidoni R and Codogno P (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 279: 18384–18391PubMedCrossRefGoogle Scholar
  159. Schorling S, Vallee B, Barz WP, Riezman H and Oesterhelt D (2001) Lag1p and Lac1p are essential for the acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol Biol Cell 12: 3417–3427PubMedGoogle Scholar
  160. Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM and Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol 52: 627–658Google Scholar
  161. Schroeder R, London E and Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behaviors. Proc Natl Acad Sci USA 91: 111–136CrossRefGoogle Scholar
  162. Schuck S and Simons K (2004) Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117: 5955–5964PubMedCrossRefGoogle Scholar
  163. Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance. Annu Rev Phytopathol 43: 229–260PubMedCrossRefGoogle Scholar
  164. Shahollari B, Peskan-Berghöfer T and Oelmüller R (2004) Receptor kinases with leucine-rich repeats are enriched in Triton X-100 insoluble plasma membrane microdomains from plants. Physiol Plant 122: 397–403CrossRefGoogle Scholar
  165. Shanklin J and Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49: 611–641PubMedCrossRefGoogle Scholar
  166. Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA and Zuo J (2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 17: 1030–1040PubMedCrossRefGoogle Scholar
  167. Simons K and Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569–572PubMedCrossRefGoogle Scholar
  168. Simons K and Tomre D (2000) Lipid rafts and signal trans-duction. Nature Rev Mol Cell Biol 1: 31–41CrossRefGoogle Scholar
  169. Simons K and Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33: 269–295PubMedCrossRefGoogle Scholar
  170. Singer SJ and Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731PubMedCrossRefGoogle Scholar
  171. Spassieva SD, Markham JE and Hille J (2002) The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32: 561–572PubMedCrossRefGoogle Scholar
  172. Sperling P, Zahringer U and Heinz E (1998) A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. J Biol Chem 273: 28590–28596PubMedCrossRefGoogle Scholar
  173. Sperling P, Ternes P, Moll H, Franke S, Zahringer U and Heinz E (2001) Functional characterization of sphingoli-pid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Lett 494: 90–94PubMedCrossRefGoogle Scholar
  174. Sperling P, Franke S, Lüthje S and Heinz E (2005) Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol Biochem 43: 1031–1038PubMedCrossRefGoogle Scholar
  175. Stone JM, Heard JE, Asai T and Ausubel FM (2000) Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. Plant Cell 12: 1811–1822PubMedGoogle Scholar
  176. Stone JM, Liang X, Nekl ER and Stiers JJ (2005) Arabidop-sis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J 41: 744–754PubMedCrossRefGoogle Scholar
  177. Sugita M, Dulaney JT and Moser HW (1972) Ceramidase deficiency in Farber's disease (lipogranulomatosis). Science 178: 1100–1102PubMedCrossRefGoogle Scholar
  178. Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H and Shimamoto K (2002) The heterotrimeric G protein subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA 99: 13307–13312PubMedCrossRefGoogle Scholar
  179. Svetek J, Yadav MP and Nothnagel EA (1999) Presence of a glycosylphosphatidylinositol lipid anchor on rose arabi-nogalactan proteins. J Biol Chem 274: 14724–14733PubMedCrossRefGoogle Scholar
  180. Taha TA, Mullen TD and Obeid LM (2006) A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochim Biophys Acta 1758: 2027–2036PubMedCrossRefGoogle Scholar
  181. Tamura K, Mitsuhashi N, Hara-Nishimura I and Imai H (2001) Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid biosynthesis. Plant Cell Physiol 42: 1274–1281PubMedCrossRefGoogle Scholar
  182. Teng C, Dong H, Shi L, Deng Y, Mu J, Zhang J, Yang X and Zuo J (2008) Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis. Plant Physiol 146: 1322–1332PubMedCrossRefGoogle Scholar
  183. Ternes P, Franke S, Zahringer U, Sperling P and Heinz E (2002) Identification and characterization of a sphingolipid Δ4-desaturase family. J Biol Chem 277: 25512–25518PubMedCrossRefGoogle Scholar
  184. Todd J, Post-Beittenmiller D and Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17: 119–130PubMedCrossRefGoogle Scholar
  185. Toke DA and Martin CE (1996) Isolation and characterization of a gene affecting fatty acid elongation in Saccharo-myces cerevisiae. J Biol Chem 271: 18413–18422PubMedCrossRefGoogle Scholar
  186. Townley HE, McDonald K, Jenkins GI, Knight MR and Leaver CJ (2005) Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner. Biol Chem 386: 161–166PubMedCrossRefGoogle Scholar
  187. Trenkamp S, Martin W and Tietjen K (2004) Specific and differential inhibition of very-long-chain fatty acid elon-gases from Arabidopsis thaliana by different herbicides. Proc Natl Acad Sci USA 101: 11903–11918PubMedCrossRefGoogle Scholar
  188. Tsegaye Y, Richardson CG, Bravo JE, Mulcahy BJ, Lynch DV, Markham JE, Jaworski JG, Chen M, Cahoon EB and Dunn TM (2007) Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin sensitive and accumulate trihydroxy 18:1 long chain base phosphate. J Biol Chem 282: 28195–28206PubMedCrossRefGoogle Scholar
  189. Uemura M and Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104: 479–496PubMedGoogle Scholar
  190. Uemura M, Joseph RA and Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109: 15–30PubMedGoogle Scholar
  191. Umemura K, Ogawa N, Yamauchi T, Iwata M, Shimura M and Koga J (2000) Cerebroside elicitors found in diverse phytopathogens activate defense responses in rice plants. Plant Cell Physiol 41: 676–683PubMedCrossRefGoogle Scholar
  192. van Asch MAJ, Rijkenberg FHJ and Coutinho TA (1992) Phytotoxicity of fumonisin B1, moniliformin and T-2 toxin to corn cultures. Phytopathology 82: 1330–1332CrossRefGoogle Scholar
  193. van der Goot GF and Harder T (2001) Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Immunology 13: 89–97Google Scholar
  194. van Door WG and Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10: 117–122CrossRefGoogle Scholar
  195. Vereb G, Szöllosi J, Matkó J, Nagy P, Farkas T, Vigh L, Mátyus L, Waldmann TA and Damjanovich S (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA 100: 8053–8058PubMedCrossRefGoogle Scholar
  196. Verhoek B, Haas R, Wrage K, Linscheid M and Heinz E (1983) Lipids and enzymatic activities in vacuolar membranes isolated via protoplasts from oat primary leaves. Z Naturforsch 38c: 770–777Google Scholar
  197. Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV and Xiao S (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20: 3163–3179PubMedCrossRefGoogle Scholar
  198. West G, Viitanen L, Alm C, Mattjus P, Salminen TA and Edqvist J (2008) Identification of a glycosphingolipid transfer protein GLTP1 in Arabidopsis thaliana. FEBS J 275: 3421–3437PubMedCrossRefGoogle Scholar
  199. Worrall D, Ng C-Y and Hetherington AM (2003) Sphingoli-pids, new players in plant signaling. Trends Plant Sci 8: 317–320PubMedCrossRefGoogle Scholar
  200. Worrall D, Liang YK, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M, Gray JE and Hetherington AM (2008) Involvement of sphingosine kinase in plant cell signalling. Plant J 56: 64–72PubMedCrossRefGoogle Scholar
  201. Wright BS, Snow JW, O'Brien TC and Lynch DV (2003) Synthesis of 4-hydroxysphinganine and characterization of sphinganine hydroxylase activity in corn. Arch Bio-chem Biophys 415: 184–192CrossRefGoogle Scholar
  202. Wu WG and Chi LM (1991) Conformational change of cholesterol side chain in lipid bilayers. J Chem Soc 113: 4683–4685CrossRefGoogle Scholar
  203. Xu X, Bittman R, Duportail G, Heissler D, Vilcheze C and London E (2001) Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J Biol Chem 276: 33540–33546PubMedCrossRefGoogle Scholar
  204. Yang Z, Jean-Baptiste G, Khoury C and Greenwood MT (2005) The mouse sphingomyelin synthase 1 (SMS1) gene is alternatively spliced to yield multiple transcripts and proteins. Gene 363: 123–132PubMedCrossRefGoogle Scholar
  205. Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K and Saedler H (1999) Characterization of the FIDDLE-HEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11: 2187–2201PubMedGoogle Scholar
  206. Yildiz Y, Matern H, Thompson B, Allegood JC, Warren RL, Ramirez DM, Hammer RE, Hamra FK, Matern S and Russell DW (2006) Mutation of β-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest 116: 2985–2994PubMedCrossRefGoogle Scholar
  207. Yoshida S and Uemura M (1986) Lipid composition of plasma membranes and tonoplasts isolated from etiolated seedlings of mung bean (Vigna radiata L.). Plant Physiol 82: 807–812PubMedCrossRefGoogle Scholar
  208. Zhang H, Desai NN, Olivera A, Seki T, Brooker G and Spiegel S (1991) Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114: 155–167PubMedCrossRefGoogle Scholar
  209. Zheng H, Rowland O and Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17: 1467–1481PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ming Chen
    • 1
    • 2
  • Edgar B. Cahoon
    • 1
    • 2
    Email author
  • Mariana Saucedo-García
    • 3
  • Javier Plasencia
    • 3
  • Marina Gavilanes-Ruíz
    • 3
  1. 1.Donald Danforth Plant Science CenterSaint LouisUSA
  2. 2.Center for Plant Science Innovation and Department of Biochemistry, E318 Beadle CenterUniversity of NebraskaLincolnUSA
  3. 3.Departmento de Bioquímica, Facultad de QuímicaUniversidad Nacional Autónoma de México, Ciudad UniversitariaDistrito FederalMéxico

Personalised recommendations