Skip to main content

Biosynthesis and Function of Chloroplast Lipids

  • Chapter
Lipids in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 30))

Summary

Chloroplast membranes are composed of four unique lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidyl-glycerol (PG). These lipids are crucial for maintaining the function of chloroplasts not simply because they account for a large fraction of the photosynthetic membranes, but because they are assembled into the photosynthetic machinery and are, therefore, directly involved in photosynthetic processes. Indeed, Ara-bidopsis mutants of these lipids possess some photosynthetic defects. Diacylglycerol (DAG), a common precursor of the glycolipids, is produced by both prokaryotic and eukaryotic pathways but the detailed mechanism of DAG supply to chloroplasts remains ambiguous. Because most of the genes encoding the lipid-synthesizing enzymes have been identified in this decade, significant progress delineating the physiological functions and regulatory mechanisms of lipid biosynthesis in chloroplasts has been achieved. In Arabidopsis, two types of MGDG synthases, Type A (AtMGD1) and Type B (AtMGD2, AtMGD3), were identified and their distinct functions in chloroplasts have been unveiled. Type A MGDG synthase is involved in the bulk of MGDG synthesis whereas Type B MGDG synthase is induced under phosphate (Pi)-limited conditions. Two genes, DGD1 and DGD2, for DGDG synthases, which are involved in DGDG synthesis, were identified. DGD1 is the predominant DGDG synthase whereas DGD2 is induced under Pi-limited growth conditions. SQDG synthesis is mediated by two enzymes, SQD1 and SQD2. The key enzyme for PG synthesis is PG phosphate synthase, which is encoded by two genes, PGP1 and PGP2. Plants have homeostatic mechanisms to balance the amount of these lipids by regulating their biosyntheses under various environmental conditions, such as limiting Pi, which stimulates replacement of phospholipids with glycolipids through regulation of enzymes involved in lipid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDP:

Cytidyldiphosphate

DAG:

sn-1,2-diacylglycerol

DGD:

Digalactosyldiacylglycerol synthase

DGDG:

Digalactosyldiacylglycerol

ER:

Endoplasmic reticulum

FdGOGAT:

Ferredoxin-dependent glutamate synthase

LPP:

Lipid phosphate phosphatase

MGDG:

Monogalactosyldiacylglycerol

MGD:

Monogalactosyldiacylglycerol synthase

NPC:

Non-specific phospholipase C

PA:

Phosphatidic acid

PAP:

Phosphatidic acid phosphatase

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PGP:

Phosphatidylglycerol phosphate

Pi:

Phosphate

PI:

Phosphatidylinositol

PLC:

Phospholipase C

PLD:

Phospholipase D

SQDG:

Sulfoquinovosyldiacylglycerol

SQD2:

Sulfoquinovosyldiacylglycerol synthase

UDP-Gal:

Uridine diphosphate-galactose

UDP-SQ:

Uridine diphosphate-sulfoquinovose

SQD1:

Uridine diphosphate-sulfoquinovose synthase

References

  • Aloni R, Schwalm K, Langhans M and Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216: 841–853

    PubMed  CAS  Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C and Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537: 128–132

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Kjellberg JM and Sandelius AS (2004) The involvement of cytosolic lipases in converting phosphatidyl choline to substrate for galactolipid synthesis in the chloro-plast envelope. Biochim Biophys Acta 1684: 46–53

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Larsson KE, Tjellstrom H, Liljenberg C and Sandelius AS (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280: 27578–27586

    Article  PubMed  CAS  Google Scholar 

  • Andrews J and Mudd JB (1985) Phosphatidylglycerol synthesis in pea chloroplasts: Pathway and localization. Plant Physiol 79: 259–265

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H, Shöttler M, Kelly AA, Sundqvist C, Dörmann P, Karim S and Jarvis P (2008) Monogalactosyldiacylg-lycerol deficiency in Arabidopsis thaliana affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol 148: 580–592

    Article  PubMed  CAS  Google Scholar 

  • Avsian-Kretchmer O, Cheng JC, Chen L, Moctezuma E and Sung ZR (2002) Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny. Plant Physiol 130: 199–209

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shi-mada H, Takamiya K, Ohta H and Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 10960–10965

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Xu C, Tamot B and Benning C (2006a) A phospha-tidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci USA 103: 10817–10822

    Article  CAS  Google Scholar 

  • Awai K, Kakimoto T, Awai C, Kaneko T, Nakamura Y, Taka-miya K, Wada H and Ohta H (2006b) Comparative genomic analysis revealed a gene for monoglucosyldiacylglycerol synthase, an enzyme for photosynthetic membrane lipid synthesis in cyanobacteria. Plant Physiol 141: 1120–1127

    Article  CAS  Google Scholar 

  • Babiychuk E, Müller F, Eubel H, Braun HP, Frentzen M and Kushnir S (2003) Arabidopsis phosphatidylglycerophos-phate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33: 899–909

    Article  PubMed  CAS  Google Scholar 

  • Benning C and Ohta H (2005) Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280: 2397–2400

    Article  PubMed  CAS  Google Scholar 

  • Benning C and Somerville CR (1992a) Identification of an operon involved in sulfolipid biosynthesis in Rhodobacter sphaeroides. J Bacteriol 174: 6479–6487

    CAS  Google Scholar 

  • Benning C and Somerville CR (1992b) Isolation and genetic complementation of a sulfolipid-deficient mutant of Rho-dobacter sphaeroides. J Bacteriol 174: 2352–2360

    CAS  Google Scholar 

  • Benning C, Beatty JT, Prince RC and Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodo-bacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci USA 90: 1561–1565

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Xu C and Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9: 241–247

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Garavito RM and Shimojima M (2008) Sulfoli-pid biosynthesis and function in plants. In: Hell R, Leus-tek T and Dahl C (eds) Sulfur Metabolism in Phototrophic Organisms, pp. 189–204. Springer-Verlag, Berlin

    Google Scholar 

  • Benson AA (2002) Paving the path. Annu Rev Plant Biol 53: 1–25

    Article  PubMed  CAS  Google Scholar 

  • Bishop WR and Bell RM (1985) Assembly of the endoplas-mic reticulum phospholipid bilayer: the phosphatidylcho-line transporter. Cell 42: 51–60

    Article  PubMed  CAS  Google Scholar 

  • Block MA, Dorne AJ, Joyard J and Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258: 13281–13286

    PubMed  CAS  Google Scholar 

  • Browse J and Somerville CR (1991) Glycerolipid synthesis. Biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42: 467–506

    Article  CAS  Google Scholar 

  • Browse J, McCourt P and Somerville CR (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227: 763–765

    Article  PubMed  CAS  Google Scholar 

  • Camara B, Bardat F, Dogbo O, Brangeon J and Monéger R (1983) Terpenoid metabolism in plastids: Isolation and biochemical characteristics of Capsicum annuum chromo-plasts. Plant Physiol 73: 94–99

    Article  PubMed  CAS  Google Scholar 

  • Carman GM and Henry SA (1989) Phospholipid biosynthesis in yeast. Annu Rev Biochem 58: 635–669

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Heacock PN, Clancey CJ and Dowhan W (1998) The PEL1 gene (renamed PGS1) encodes the phosphati-dylglycero-phosphate synthase of Saccharomyces cerevi-siae. J Biol Chem 273: 9829–9836

    Article  PubMed  CAS  Google Scholar 

  • Chrastil J and Parrish FW (1987) Phospholipase C and D in rice grains. J Agric Food Chem 35: 624–627

    Article  CAS  Google Scholar 

  • Cline K and Keegstra K (1983) Galactosyltransferases involved in galactolipid biosynthesis are located in the outer membrane of pea chloroplast envelopes. Plant Phys-iol 71: 366–372

    Article  CAS  Google Scholar 

  • Covès J, Joyard J and Douce R (1988) Lipid requirement and kinetic studies of solubilized UDP-galactose:diacylglycerol galactosyltransferase activity from spinach chloroplast envelope membranes. Proc Natl Acad Sci USA 85: 4966–4970

    Article  PubMed  Google Scholar 

  • Cruz-Ramírez A, Oropeza-Aburto A, Razo-Hernández F, Ramirez-Chávez E and Herrera-Estrella L (2006) Phos-pholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Ara-bidopsis roots. Proc Natl Acad Sci USA 103: 6765–6770

    Article  PubMed  CAS  Google Scholar 

  • Dörmann P, Hoffmann-Benning S, Balbo I and Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl dia-cylglycerol. Plant Cell 7: 1801–1810

    PubMed  Google Scholar 

  • Dörmann P, Balbo I and Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181–2184

    Article  PubMed  Google Scholar 

  • Douce R and Joyard J (1980) Lipids: structure and function. In: Stumpf PK (ed) The Biochemistry of Plants, Vol 4, pp. 321–362. Academic Press, New York

    Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D and Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955

    Article  PubMed  CAS  Google Scholar 

  • Essigmann B, Hespenheide BM, Kuhn LA and Benning C (1999) Prediction of the active-site structure and NAD(+) binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis. Arch Biochem Biophys 369: 30–41

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M, Heinz E, McKeon TA and Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyl-transferase from pea and spinach chloroplasts. Eur J Bio-chem 129: 629–636

    Article  CAS  Google Scholar 

  • Fritz M, Lokstein H, Hackenberg D, Welti R, Roth M, Zähringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP and Heinz E (2007) Channeling of eukaryotic diacylglyc-erol into the biosynthesis of plastidial phosphatidylglyc-erol. J Biol Chem 282: 4613–4625

    Article  PubMed  CAS  Google Scholar 

  • Froehlich JE, Benning C and Dörmann P (2001) The digalac-tosyldiacylglycerol (DGDG) synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with monogalactos-yldiacylglycerol synthase for DGDG biosynthesis. J Biol Chem 276: 31806–31812

    Article  PubMed  CAS  Google Scholar 

  • Gad M, Awai K, Shimojima M, Yamaryo Y, Shimada H, Masuda T, Takamiya K, Ikai A and Ohta H (2001) Accumulation of plant galactolipid affects cell morphology of Escherichia coli. Biochem Biophys Res Commun 286: 114–118

    Article  PubMed  CAS  Google Scholar 

  • Gage DA, Huang ZH and Benning C (1992) Comparison of sulfoquinovosyl diacylglycerol from spinach and the purple bacterium Rhodobacter spaeroides by fast atom bombardment tandem mass spectrometry. Lipids 27: 632–636

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SE and Roughan PG (1983) Relationship between fatty-acyl composition of diacylgalactosylglycerol and turnover of chloroplast phosphatidate. Biochem J 210: 949–952

    PubMed  CAS  Google Scholar 

  • Gaude N, Nakamura Y, Scheible WR, Ohta H and Dörmann P (2008) Phospholipase C5 (NPC5) is involved in galac-tolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56: 28–39

    Article  PubMed  CAS  Google Scholar 

  • Goss R, Lohr M, Latowski D, Grzyb J, Vieler A, Wilhelm C and Strzalka K (2005) Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubiliza-tion and de-epoxidation. Biochemistry 44: 4028–4036

    Article  PubMed  CAS  Google Scholar 

  • Güler S, Seeliger A, Härtel H, Renger G and Benning C (1996) A null mutant of Synechococcus sp. PCC 7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271: 7501–7507

    Article  PubMed  Google Scholar 

  • Gustafson KR, Cardellina JH, Fuller RW, Weislow OS, Kiser RF, Snader KM, Patterson GM and Boyd MR (1989) AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 81: 1254–1258

    Article  PubMed  CAS  Google Scholar 

  • Hagio M, Gombos Z, Várkonyi Z, Masamoto K, Sato N, Tsuzuki M and Wada H (2000) Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol 124: 795–804

    Article  PubMed  CAS  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S and Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43: 1456–1464

    Article  PubMed  CAS  Google Scholar 

  • Härtel H, Essigmann B, Lokstein H, Hoffmann-Benning S, Peters-Kottig M and Benning C (1998) The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation, of the thy-lakoid membrane. Biochim Biophys Acta 1415: 205–218

    Article  PubMed  Google Scholar 

  • Härtel H, Dörmann P and Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97: 10649–10654

    Article  PubMed  Google Scholar 

  • Heinz E (1977) Enzymatic reactions in galactolipid biosynthesis. In: Tevini M and Lichtenthaler HK (eds) Lipids and Lipid Polymers, pp. 102–120. Springer-Verlag, Berlin

    Chapter  Google Scholar 

  • Heinz E and Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Heinz E, Schmidt H, Hoch M, Jung KH, Binder H and Schmidt RR (1989) Synthesis of different nucleoside 5'-diphospho-sulfoquinovoses and their use for studies on sulfolipid biosynthesis in chloroplasts. Eur J Biochem 184: 445–453

    Article  PubMed  CAS  Google Scholar 

  • Hobbie L and Estelle M (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J 7: 211–220

    Article  PubMed  CAS  Google Scholar 

  • Hölzl G, Zahringer U, Warnecke D and Heinz E (2005) Gly-coengineering of cyanobacterial thylakoid membranes for future studies on the role of glycolipids in photosynthesis. Plant Cell Physiol 46: 1766–1778

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C and Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97: 8175–8179

    Article  PubMed  CAS  Google Scholar 

  • Jones MR (2007) Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 46: 56–87

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Bligny R, Joyard J and Block MA (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 544: 63–68

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J, Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167: 863–874,

    Article  PubMed  CAS  Google Scholar 

  • Joyard J and Douce R (1977) Site of synthesis of phospha-tidic acid and diacyglycerol in spinach chloroplasts. Biochim Biophys Acta 486: 273–285

    Article  PubMed  CAS  Google Scholar 

  • Joyard J and Douce R (1979) Characterization of phosphati-date phosphohydrolase activity associated with chloro-plast envelope membranes. FEBS Lett 102: 147–150

    Article  PubMed  CAS  Google Scholar 

  • Joyard J and Douce R (1987) Galactolipid synthesis. In: The Biochemistry of Plants, Vol 9, pp. 215–274. Academic Press, New York

    Google Scholar 

  • Joyard J, Maréchal E, Miège C, Block MA, Dorne AJ and Douce R (1998) Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Siegenthaler PA and Murata N (eds) Lipid in Photosynthesis: Structure, Function and Genetics, pp. 21–52. Kluwer, Dordrecht

    Google Scholar 

  • Kates M (1955) Hydrolysis of lecithin by plant plastid enzymes. Can J Biochem Physiol 33: 575–589

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Kuge O, Chang SC, Heacock PN, Rho M, Suzuki K, Nishijima M and Dowhan W (1999) Isolation of a Chinese hamster ovary (CHO) cDNA encoding phos-phatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells. J Biol Chem 274: 1828–1834

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA and Dörmann P (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylg-lycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277: 1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA, Froehlich JE and Dörmann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15: 2694–2706

    Article  PubMed  CAS  Google Scholar 

  • Klaus D, Härtel H, Fitzpatrick LM, Froehlich JE, Hubert J, Benning C and Dörmann P (2002) Digalactosyldiacylg-lycerol synthesis in chloroplasts of the Arabidopsis dgd1 mutant. Plant Physiol 128: 885–895

    Article  PubMed  CAS  Google Scholar 

  • Kleinig H and Liedvogel B (1978) Fatty acid synthesis by isolated chromoplasts from the daffodil. [14C]Acetate incorporation and distribution of labelled acids. Eur J Biochem 83: 499–505

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Awai K, Takamiya K and Ohta H (2004) Arabidopsis type B monogalactosyldiacylglycerol syn-thase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol 134: 640–648

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Masuda T, Takamiya K and Ohta H (2006) Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk. Plant J 47: 238–248

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Kondo M, Fukuda H, Nishimura M and Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104: 17216–17221

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Awai K, Nakamura M, Nagatani A, Masuda T and Ohta H (2009) Type B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling and are crucial for low-phosphate adaptation. Plant J 57: 322–331

    Article  PubMed  CAS  Google Scholar 

  • Lai F, Thacker J, Li Y and Doerner P (2007) Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. Plant J 50: 545–556

    Article  PubMed  CAS  Google Scholar 

  • Li M, Qin C, Welti R and Wang X (2006a) Double knockouts of phospholipases Dζ1 and Dζ2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol 140: 761–770

    Article  CAS  Google Scholar 

  • Li M, Welti R and Wang X (2006b) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases D ζ1 and D ζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylg-lycerol accumulation in phosphorus-starved plants. Plant Physiol 142: 750–761

    Article  CAS  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A and Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6: 280–287

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Xu C, Awai K, Jones AD and Benning C (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J Biol Chem 282: 35945–35953

    Article  PubMed  CAS  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109: 7–13

    PubMed  CAS  Google Scholar 

  • Malherbe A, Block MA, Joyard J and Douce R (1992) Feedback inhibition of phosphatidate phosphatase from spinach chloroplast envelope membranes by diacylglycerol. J Biol Chem 267: 23546–23553

    PubMed  CAS  Google Scholar 

  • Maréchal E, Block MA, Joyard J and Douce R (1991) Purification of UDP-galactose:1,2-diacylglycerol galactosyl-transferase from spinach chloroplast envelope membrane. C R Acad Sci Paris t 313: 521–528

    Google Scholar 

  • Maréchal E, Block MA, Joyard J and Douce R (1994a) Comparison of the kinetic properties of MGDG synthase in mixed micelles and in envelope membranes from spinach chloroplast. FEBS Lett 352: 307–310

    Article  Google Scholar 

  • Maréchal E, Block MA, Joyard J and Douce R (1994b) Kinetic properties of monogalactosyldiacylglycerol syn-thase from spinach chloroplast envelope membranes. J Biol Chem 269: 5788–5798

    Google Scholar 

  • Miège C and Maréchal E (1999) 1,2-sn-Diacylglycerol in plant cells: product, substrate and regulator. Plant Physiol Biochem 37: 795–808

    Article  PubMed  Google Scholar 

  • Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R and Joyard J (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur J Biochem 265: 990–1001

    Article  PubMed  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L and Thibaud M-C (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102: 11934–11939

    Article  PubMed  CAS  Google Scholar 

  • Mongrand S, Bessoule JJ and Cassagne C (1997) A re-examination in vivo of the phosphatidylcholine-galactoli-pid metabolic relationship during plant lipid biosynthesis. Biochem J 327: 853–858

    PubMed  CAS  Google Scholar 

  • Mongrand S, Cassagne C and Bessoule JJ (2000) Import of lyso-phosphatidylcholine into chloroplasts likely at the origin of eukaryotic plastidial lipids. Plant Physiol 122: 845–852

    Article  PubMed  CAS  Google Scholar 

  • Moore TS Jr (1974) Phosphatidylglycerol synthesis in castor bean endosperm. Kinetics, requirements, and intracellular localization. Plant Physiol 54: 164–168

    Article  PubMed  CAS  Google Scholar 

  • Moore TS Jr (1982) Phospholipid biosynthesis. Annu Rev Plant Physiol 33: 235–259

    Article  CAS  Google Scholar 

  • Mudd JB and Dezacks R (1981) Synthesis of phosphatidylg-lycerol by chloroplasts from leaves of Spinacia oleracea L. (spinach). Arch Biochem Biophys 209: 584–591

    Article  PubMed  CAS  Google Scholar 

  • Müller F and Frentzen M (2001) Phosphatidylglycerophos-phate synthases from Arabidopsis thaliana. FEBS Lett 509: 298–302

    Article  PubMed  Google Scholar 

  • Murphy DJ (1982) The importance of non-planar bilayer regions in photosynthetic membranes and their stabilization by galactolipids. FEBS Lett 150: 19–26

    Article  CAS  Google Scholar 

  • Murphy DJ (1986) The molecular organisation of the photo-synthetic membranes of higher plants. Biochim Biophys Acta 864: 33–94

    Article  CAS  Google Scholar 

  • Nakamura Y and Ohta H (2007) The diacylglycerol forming pathways differ among floral organs of Petunia hybrida. FEBS Lett 581: 5475–5479

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Arimitsu H, Yamaryo Y, Awai K, Masuda T, Shimada H, Takamiya K and Ohta H (2003) Digalactos-yldiacylglycerol is a major glycolipid in floral organs of Petunia hybrida. Lipids 38: 1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K and Ohta H (2005) A novel phosphatidylcholine-hydro-lyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280: 7469–7476

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Tsuchiya M and Ohta H (2007) Plastidic phos-phatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282: 29013–29021

    Article  PubMed  CAS  Google Scholar 

  • Nishida I and Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol BIol 47: 541–568

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G and Aoyama T (2003) Modulation of phos-pholipid signaling by GLABRA2 in root-hair pattern formation. Science 300: 1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Ohlrogge JB and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957–970

    PubMed  CAS  Google Scholar 

  • Ohnishi M, Thompson GA Jr (1991) Biosynthesis of the unique trans-delta 3-hexadecenoic acid component of chloroplast phosphatidylglycerol: evidence concerning its site and mechanism of formation. Arch Biochem Biophys 288: 591–599,

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Shimojima M, Arai T, Masuda T, Shioi Y and Takamiya K (1995a) UDP-galactose: diacylglycerol galactosyltransferase in cucumber seedlings: purification of the enzyme and the activation by phosphatidic acid In: Kader JC and Mazliak P (eds) Plant Lipid Metabolism, pp. 152–155. Kluwer, Dordrecht

    Google Scholar 

  • Ohta H, Shimojima M, Ookata K, Masuda T, Shioi Y and Takamiya K (1995b) A close relationship between increases in galactosyltransferase activity and the accumulation of galactolipids during plastid development in cucumber seedlings. Plant Cell Physiol 36: 1115–1120

    CAS  Google Scholar 

  • Okazaki K, Sato N, Tsuji N, Tsuzuki M and Nishida I (2006) The significance of C16 fatty acids in the sn-2 positions of glycerolipids in the photosynthetic growth of Syne-chocystis sp. PCC 6803. Plant Physiol 141: 546–556

    Article  PubMed  CAS  Google Scholar 

  • Ostrander DB, Zhang M, Mileykovskaya E, Rho M and Dowhan W (2001) Lack of mitochondrial anionic phos-pholipids causes an inhibition of translation of protein components of the electron transport chain. A yeast genetic model system for the study of anionic phos-pholipid function in mitochondria. J Biol Chem 276: 25262–25272

    Article  PubMed  CAS  Google Scholar 

  • Pierrugues O, Brutesco C, Oshiro J, Gouy M, Deveaux Y, Carman GM, Thuriaux P and Kazmaier M (2001) Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLPP1 gene in response to stress. J Biol Chem 276: 20300–20308

    Article  PubMed  CAS  Google Scholar 

  • Pugh CE, Roy AB, Hawkes T and Harwood JL (1995) A new pathway for the synthesis of the plant sulpholipid, sulpho-quinovosyldiacylglycerol. Biochem J 309: 513–519

    PubMed  CAS  Google Scholar 

  • Raghothama K (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50: 665–693

    Article  PubMed  CAS  Google Scholar 

  • Riekhof WR, Ruckle ME, Lydic TA, Sears BB and Benning C (2003) The sulfolipids 2′-O-acyl-sulfoquinovosyldia-cylglycerol and sulfoquinovosyldiacylglycerol are absent from a Chlamydomonas reinhardtii mutant deleted in SQD1. Plant Physiol 133: 864–874

    Article  PubMed  CAS  Google Scholar 

  • Rouet-Mayer MA, Valentova O, Simond-Côte E, Daussant J and Thévenot C (1995) Critical analysis of phospholipid hydrolyzing activities in ripening tomato fruits. Study by spectrofluorimetry and high-performance liquid chroma-tography. Lipids 30: 739–746

    Article  PubMed  CAS  Google Scholar 

  • Roughan PG (1970) Turnover of the glycerolipids of pumpkin leaves. The importance of phosphatidylcholine. Bio-chem J 117: 1–8

    CAS  Google Scholar 

  • Roughan PG and Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33: 97–132

    Article  CAS  Google Scholar 

  • Roughan G and Slack R (1984) Glycerolipid synthesis in leaves. Trends Biochem Sci 9: 383–386

    Article  CAS  Google Scholar 

  • Roughan G, Thompson GA Jr and Cho SH (1987) Metabolism of exogenous long-chain fatty acids by spinach leaves. Arch Biochem Biophys 259: 481–496

    Article  PubMed  CAS  Google Scholar 

  • Sanda S, Leustek T, Theisen MJ, Garavito RM and Benning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276: 3941–3946

    Article  PubMed  CAS  Google Scholar 

  • Sato N (2004) Roles of the acidic lipids sulfoquinovosyl dia-cylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J Plant Res 117: 495–505

    Article  PubMed  CAS  Google Scholar 

  • Sato N and Murata N (1982) Lipid biosynthesis in the bluegreen alga, Anabaena variabilis. I. Lipid classes. Biochim Biophys Acta 710: 271–278

    Article  CAS  Google Scholar 

  • Sato N, Hagio M, Wada H and Tsuzuki M (2000a) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97: 10655–10660

    Article  CAS  Google Scholar 

  • Sato N, Hagio M, Wada H and Tsuzuki M (2000b) Environmental effects on acidic lipids of thylakoid membranes. Biochem Soc Trans 28: 912–914

    Article  CAS  Google Scholar 

  • Sato N, Sugimoto K, Meguro A and Tsuzuki M (2003) Identification of a gene for UDP-sulfoquinovose synthase of a green alga, Chlamydomonas reinhardtii, and its phylog-eny. DNA Res 10: 229–237

    Article  PubMed  CAS  Google Scholar 

  • Scherer GF, Paul RU, Holk A and Martinec J (2002) Down-regulation by elicitors of phosphatidylcholine-hydrolyz-ing phospholipase C and up-regulation of phospholipase A in plant cells. Biochem Biophys Res Commun 293: 766–770

    Article  PubMed  CAS  Google Scholar 

  • Seifert U and Heinz E (1992) Enzymatic characteristics of UDP-sulfoquinovose: diacylglycerol sulfoquinovosyltrans-ferase from chloroplast envelopes. Bot Acta 105: 197–205

    CAS  Google Scholar 

  • Shimojima M and Benning C (2003) Native uridine 5'-diphosphate-sulfoquinovose synthase, SQD1, from spinach purifies as a 250-kDa complex. Arch Biochem Biophys 413: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Shimojima M, Ohta H, Iwamatsu A, Masuda T, Shioi Y and Takamiya K (1997) Cloning of the gene for monogalac-tosyldiacylglycerol synthase and its evolutionary origin. Proc Natl Acad Sci USA 94: 333–337

    Article  PubMed  CAS  Google Scholar 

  • Shimojima M, Hoffmann-Benning S, Garavito RM and Benning C (2005) Ferredoxin-dependent glutamate synthase moonlights in plant sulfolipid biosynthesis by forming a complex with SQD1. Arch Biochem Biophys 436: 206–214

    Article  PubMed  CAS  Google Scholar 

  • Siddique MA, Grossmann J, Gruissem W and Baginsky S (2006) Proteome analysis of bell pepper (Capsicum annum L.) chromoplasts. Plant Cell Physiol 47: 1663–1673

    Article  PubMed  CAS  Google Scholar 

  • Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A and Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci USA 97: 1473–1476

    Article  PubMed  CAS  Google Scholar 

  • Slabas T (1997) Galactolipid biosynthesis genes and endo-symbiosis. Trends Plant Sci 2: 161–162

    Article  Google Scholar 

  • Somerville CR, Browse J, Jaworski JG and Ohlrogge JB (2000) Lipids. In: Buchanan BB, Gruissem W and Jones RL (eds) Biochemistry and Molecular Biology of Plants, pp. 456–527. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Strauss H, Leibovitz-Ben GZ and Heller M (1976) Enzymatic hydrolysis of 1-monoacyl-SN-glycerol-3-phosphoryl-choline (1-lysolecithin) by phospholipases from peanut seeds. Lipids 11: 442–448

    Article  PubMed  CAS  Google Scholar 

  • Stymne S and Stobart A (1987) Triacylglycerol biosynthesis. In: Stumpf PK and Conn EE (eds) The Biochemistry of Plants, pp. 175–214. Academic Press, New York

    Google Scholar 

  • Teucher T and Heinz E (1991) Purification of UDP-galactose: diacylglycerol galactosyltransferase from chloroplast envelopes of spinach (Spinacia oleracea L.). Planta 184: 319–326

    Article  CAS  Google Scholar 

  • Ticconi CA, Delatorre CA and Abel S (2001) Attenuation of phosphate starvation responses by phosphite in Arabidop-sis. Plant Physiol 127: 963–972

    Article  PubMed  CAS  Google Scholar 

  • Tietje C and Heinz E (1998) Uridine-diphospho-sulfo-quinovose:diacylglycerol sulfoquinovosyltransferase activity is concentrated in the inner membrane of chloroplast envelopes. Planta 206: 72–78

    Article  CAS  Google Scholar 

  • Varadarajan DK, Karthikeyan AS, Matilda PD and Raghoth-ama KG (2002) Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol 129: 1232–1240

    Article  PubMed  CAS  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139: 566–573

    Article  PubMed  CAS  Google Scholar 

  • Weier D, Müller C, Gaspers C and Frentzen M (2005) Characterisation of acyltransferases from Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 334: 1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Williams JP, Imperial V, Khan MU and Hodson JN (2000) The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L. leaves. Biochem J 349: 127–133

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C and Benning C (2002) The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity. Plant Physiol 129: 594–604

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Fan J, Riekhof W, Froehlich JE and Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22: 2370–2379

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Fan J, Froehlich JE, Awai K and Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17: 3094–3110

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY (2006) Functional roles of the major chloro-plast lipids in the violaxanthin cycle. Planta 224: 719–724

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M and Yamamoto KT (1999) Effects of natural and synthetic auxins on the gravitropic growth habit of roots in two auxin-resistant mutants of Arabidopsis, axr1 and axr4: evidence for defects in the auxin influx mechanism of axr4. J Plant Res 112: 391–396

    Article  PubMed  CAS  Google Scholar 

  • Yamaryo Y, Kanai D, Awai K, Shimojima M, Masuda T, Shimada H, Takamiya K and Ohta H (2003) Light and cytokinin play a co-operative role in MGDG synthesis in greening cucumber cotyledons. Plant Cell Physiol 44: 844–855

    Article  PubMed  CAS  Google Scholar 

  • Yamaryo Y, Motohashi K, Takamiya K, Hisabori T and Ohta H (2006) In vitro reconstitution of monogalactosyldia-cylglycerol (MGDG) synthase regulation by thioredoxin. FEBS Lett 580: 4086–4090

    Article  PubMed  CAS  Google Scholar 

  • Yu B and Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36: 762–770

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Xu C and Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99: 5732–5737

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The MGDG and DAG research performed in the Ohta lab has been supported, in part, by a Grand-in-Aid for Scientific Research on Priority Areas Nos.17051009, 18056007, 19039010 and 20053005 from MEXT of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ohta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shimojima, M., Ohta, H., Nakamura, Y. (2009). Biosynthesis and Function of Chloroplast Lipids. In: Wada, H., Murata, N. (eds) Lipids in Photosynthesis. Advances in Photosynthesis and Respiration, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2863-1_3

Download citation

Publish with us

Policies and ethics