Skip to main content

Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b 6 f Complex

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 30))

Summary

This chapter describes the data accumulated in the last decade regarding the specific function of lipids in oxygenic photosynthesis, based on crystal structures of at least 3.0 Å resolution of the main photosynthetic membrane protein—pigment complexes, photosystem I, photosystem II and cytochrome b 6 f. Comparisons with other structures of membrane protein complexes like the bacterial reaction center and the external antenna system from the plant light harvesting complexes II reveal the functional versatility of integral lipids. A detailed structural description of the membrane protein complexes pinpoints the various interactions of integral lipids between protein and pigments (e.g., chlorophylls, carotenoids, quinones) and gives a deep insight into their functional roles. A particular focus in this chapter is on the lipid-filled plastoquinone exchange cavities in photosystem II and cytochrome b 6 f. The differences in extent and lipophilic character of these cavities will be discussed in the light of the resulting plastoqui-none/plastoquinol exchange mechanism. An exceptional feature of PS II is the water splitting reaction enabled by the Mn4Ca cluster. This results in the release of protons to the lumenal aqueous phase, release of electrons to a chain of acceptors, which provides metabolically available reduction equivalents, and release of dioxygen to the atmosphere. The high content of lipids in the interior of photosystem II will be correlated with possible diffusion pathways of the dioxygen and the turnover of the D1 protein, necessary to counteract the photodamage occurring within photosystem II. More structural details of integral lipids derived from higher resolution data from these remarkable membrane protein complexes in combination with data from mutant and/or spectroscopic studies will lead to extended functional insights in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Car:

β-carotene

CL:

Cardiolipin

Chl:

Chlorophyll

DGDG:

Digalactosyldiacylglycerol

DOPC:

Dioleylphosphatidylcholin

GGDG:

Glucosylgalactos-yldiacylglycerol

ISP:

Rieske iron-sulfur protein

LHCII:

Light harvesting complex II

MGDG:

Monogalactos-yldiacylglcyerol

β-DM:

n-dodecyl-β-D-maltoside

BNG:

n-nonyl-β-D-glucoside

UMQ:

n-undecyl-β-D-maltopyra-noside

Pheo:

Pheophytin

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PS I:

Photosystem I

PS II:

Photosystem II

QK :

Phylloqui-none

PQH2 :

Plastoquinol 9

PQ:

Plastoquinone 9

PBRC:

Purple bacterial reaction center

RC:

Reaction center

SQDG:

Sulfoquinovosyldiacylglycerol

TMH:

Trans-membrane α-helix

TDS:

Tridecylstigmatelin

References

  • Allen JF (2004) Cytochrome b 6 f: structure for signaling and vectorial metabolism. Trends Plant Sci 9: 130–137

    PubMed  CAS  Google Scholar 

  • Allen JF and Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6: 317–326

    PubMed  CAS  Google Scholar 

  • Amunts A, Drory O and Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447: 58–63

    PubMed  CAS  Google Scholar 

  • Amunts A, Drory O and Nelson N (2008) A glimpse into the atomic structure of plant photosystem I. In: Fromme P (ed) Photosynthetic Protein Complexes: A Structural Approach. Wiley-VCH, Weinheim, pp. 65–81

    Google Scholar 

  • Baena-Gonzalez E and Aro EM (2002) Biogenesis, assembly and turnover of photosystem II units. Philos Trans R Soc London B Biol Sci 357: 1451–1459

    PubMed  CAS  Google Scholar 

  • Barbato R, Friso G, Rigoni F, Dalla Vecchia F and Giacometti GM (1992) Structural-changes and lateral redistribution of photosystem-II during donor side photoinhibition of thylakoids. J Cell Biol 119: 325–335

    PubMed  CAS  Google Scholar 

  • Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34: 619–631

    PubMed  CAS  Google Scholar 

  • Barber J and Nield J (2002) Organization of transmembrane helices in photosystem II: comparison of plants and cyanobacteria. Philos Trans R Soc London B Biol Sci 357: 1329–1335

    PubMed  CAS  Google Scholar 

  • Barros T and Kühlbrandt W (2009) Crystallisation, structure and function of plant light-harvesting complex II. Biochim Biophys Acta 1787: 753–772

    PubMed  CAS  Google Scholar 

  • Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635

    PubMed  CAS  Google Scholar 

  • Bondarava N, De Pascalis L, Al-Babili S, Goussias C, Golecki JR, Beyer P, Bock R and Krieger-Liszkay A (2003) Evidence that cytochrome b559 mediates the oxidation of reduced plastoquinone in the dark. J Biol Chem 278: 13554–13560

    PubMed  CAS  Google Scholar 

  • Breyton C (2000) The cytochrome b 6 f complex: structural studies and comparison with the bc 1 complex. Biochim Biophys Acta 1459: 467–474

    PubMed  CAS  Google Scholar 

  • Brudvig GW (2008) Water oxidation chemistry of photosystem II. Philos Trans R Soc London B Biol Sci 363: 1211–1218

    PubMed  CAS  Google Scholar 

  • Büchel C and Kühlbrandt W (2005) Structural differences in the inner part of photosystem II between higher plants and cyanobacteria. Photosynth Res 85: 3–13

    PubMed  Google Scholar 

  • Camara-Artigas A, Brune D and Allen JP (2002) Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci USA 99: 11055–11060

    PubMed  CAS  Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurisu G and Smith JL (2004) Evolution of photosynthesis: time-independent structure of the cytochrome b 6 f complex. Biochemistry 43: 5921– 5929

    PubMed  CAS  Google Scholar 

  • Deisenhofer J and Michel H (2004) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. Biosci Rep 24: 323–361

    PubMed  Google Scholar 

  • Depalo N, Catucci L, Mallardi A, Corcelli A and Agostiano A (2004) Enrichment of cardiolipin content throughout the purification procedure of photosystem II. Bioelectro-chemistry 63: 103–106

    CAS  Google Scholar 

  • Dezi M, Francia F, Mallardi A, Colafemmina G, Palazzo G and Venturoli G (2007) Stabilization of charge separation and cardiolipin confinement in antenna-reaction center complexes purified from Rhodobacter sphaeroides. Biochim Biophys Acta 1767: 1041–1056

    PubMed  CAS  Google Scholar 

  • Domonkos I, Malec P, Sallai A, Kovacs L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T and Gombos Z (2004) Phosphatidylg-lycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134: 1471–1478

    PubMed  CAS  Google Scholar 

  • Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A and Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279: 2063–2068

    PubMed  CAS  Google Scholar 

  • Fromme P (ed) (2008) Photosynthetic Protein Complexes — A Structural Approach. Wiley VCH, Weinheim

    Google Scholar 

  • Fromme P, Jordan P and Krauß N (2001) Structure of photo-system I. Biochim Biophys Acta 1507: 5–31

    PubMed  CAS  Google Scholar 

  • Fyfe PK, Isaacs NW, Cogdell RJ and Jones MR (2004) Disruption of a specific molecular interaction with a bound lipid affects the thermal stability of the purple bacterial reaction centre. Biochim Biophys Acta 1608: 11–22

    PubMed  CAS  Google Scholar 

  • Fyfe PK and Jones MR (2005) Lipids in and around photosynthetic reaction centres. Biochem Soc Trans 33: 924–930

    PubMed  CAS  Google Scholar 

  • Giroud C and Siegenthaler PA (1988) Development of oat prothylakoids into thylakoids during greening does not change transmembrane galactolipid asymmetry but preserves the thylakoid bilayer. Plant Physiol 88: 412–417

    PubMed  CAS  Google Scholar 

  • Golbeck JH (ed) (2006) Photosystem I – The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase. Springer, Dordrecht

    Google Scholar 

  • Gombos Z, Varkonyi Z, Hagio M, Iwaki M, Kovacs L, Masamoto K, Itoh S and Wada H (2002) Phosphatidylg-lycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41: 3796–3802

    PubMed  CAS  Google Scholar 

  • Gurezka R, Laage R, Brosig B and Langosch D (1999) A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J Biol Chem 274: 9265–9270

    PubMed  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A and Saenger W (2009) Cyanobacterial photosystem II at 2.9 Å resolution: role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16: 334–342

    PubMed  CAS  Google Scholar 

  • Hankamer B, Morris E, Nield J, Carne A and Barber J (2001) Subunit positioning and transmembrane helix organization in the core dimer of photosystem II. FEBS Lett 504: 142–151

    PubMed  CAS  Google Scholar 

  • Hauss T, Dante S, Haines TH and Dencher NA (2005) Localization of coenzyme Q10 in the center of a deuter-ated lipid membrane by neutron diffraction. Biochim Bio-phys Acta 1710: 57–62

    CAS  Google Scholar 

  • Holden-Dye K, Crouch LI and Jones MR (2008) Structure, function and interactions of the PufX protein. Biochim Biophys Acta 1777: 613–630

    PubMed  CAS  Google Scholar 

  • Huang LS, Cobessi D, Tung EY and Berry EA (2005) Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc 1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol Biol 351: 573–597

    PubMed  CAS  Google Scholar 

  • Hunte C (2005) Specific protein-lipid interactions in membrane proteins. Biochem Soc Trans 33: 938–942

    PubMed  CAS  Google Scholar 

  • Hunte C, Koepke J, Lange C, Rossmanith T and Michel H (2000) Structure at 2.3 Å resolution of the cytochrome bc 1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure 8: 669–684

    PubMed  CAS  Google Scholar 

  • Iverson TM (2006) Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 10: 91–100

    PubMed  CAS  Google Scholar 

  • Jones MR (2007) Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 46: 56–87

    PubMed  CAS  Google Scholar 

  • Jones MR, Fyfe PK, Roszak AW, Isaacs NW and Cogdell RJ (2002) Protein-lipid interactions in the purple bacterial reaction centre. Biochim Biophys Acta 1565: 206–214

    PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyano-bacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917

    PubMed  CAS  Google Scholar 

  • Kaminskaya O, Shuvalov VA and Renger G (2007) Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome b559. Biochemistry 46: 1091–1105

    PubMed  CAS  Google Scholar 

  • Kamiya N and Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103

    PubMed  CAS  Google Scholar 

  • Kanervo E, Tasaka Y, Murata N and Aro EM (1997) Membrane lipid unsaturation modulates processing of the photosystem II reaction-center protein D1 at low temperatures. Plant Physiol 114: 841–849

    PubMed  CAS  Google Scholar 

  • Kern J and Renger G (2007) Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase. Photosynth Res 94: 183–202

    PubMed  CAS  Google Scholar 

  • Kern J, Loll B, Lüneberg C, DiFiore D, Biesiadka J, Irrgang KD and Zouni A (2005) Purification, characterisation and crystallisation of photosystem II from Thermosynechoc-occus elongatus cultivated in a new type of photobioreactor. Biochim Biophys Acta 1706: 147–157

    PubMed  CAS  Google Scholar 

  • Kiseleva LL, Horvath I, Vigh L and Los DA (1999) Temperature-induced specific lipid desaturation in the thermophilic cyanobacterium Synechococcus vulcanus. FEMS Microbiol Lett 175: 179–183

    CAS  Google Scholar 

  • Koepke J, Krammer EM, Klingen AR, Sebban P, Ullmann GM and Fritzsch G (2007) pH modulates the quinone position in the photosynthetic reaction center from Rho-dobacter sphaeroides in the neutral and charge-separated states. J Mol Biol 371: 396–409

    PubMed  CAS  Google Scholar 

  • Krauß N (2008) Structure and function of cyanobacterial photosystem I. In: Fromme P (ed) Photosynthetic Protein Complexes: A Structural Approach. Wiley-VCH, Wein-heim, pp. 23–64

    Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56: 337–346

    PubMed  CAS  Google Scholar 

  • Kruk J and Trebst A (2008) Plastoquinol as a singlet oxygen scavenger in photosystem II. Biochim Biophys Acta 1777: 154–162

    PubMed  CAS  Google Scholar 

  • Kruse O and Schmid GH (1995) The role of phosphatidylg-lycerol as a functional effector and membrane anchor of the D1-core peptide from photosystem II-particles of the cyanobacterium Oscillatoria chalybea. Z Naturforsch 50c: 380–390

    Google Scholar 

  • Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH and Barber J (2000) Phosphati-dylglycerol is involved in the dimerization of photosystem II. J Biol Chem 275: 6509–6514

    PubMed  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009– 1014

    PubMed  CAS  Google Scholar 

  • Laczkó-Dobos H, Ughy B, Tóth SZ, Komenda J, Zsiros O, Domonkos I, Párducz á, Bogos B, Komura M, Itoh S and Gombos Z (2008) Role of phosphatidylglycerol in the function and assembly of photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochim Biophys Acta 1777: 1184–1194

    PubMed  Google Scholar 

  • Lange C, Nett JH, Trumpower BL and Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc 1 complex structure. EMBO J 20: 6591–6600

    PubMed  CAS  Google Scholar 

  • Lau WC, Baker LA and Rubinstein JL (2008) Cryo-EM structure of the yeast AT P synthase. J Mol Biol 382: 1256–1264

    PubMed  CAS  Google Scholar 

  • Law CJ and Cogdell RJ (2008) The light-harvesting system of purple anoxygenic photosynthetic bacteria. In: Renger G (ed) Primary Processes of Photosynthesis, Vol 1, pp 205–259. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Leng J, Sakurai I, Wada H and Shen JR (2008) Effects of phospholipase and lipase treatments on photosystem II core dimer from a thermophilic cyanobacterium. Photosynth Res 98: 469–478

    PubMed  CAS  Google Scholar 

  • Ligeza A, Tikhonov AN, Hyde JS and Subczynski WK (1998) Oxygen permeability of thylakoid membranes: electron paramagnetic resonance spin labeling study. Biochim Biophys Acta 1365: 453–463

    PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292

    PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438: 1040–1044

    PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2007) Lipids in photosystem II: interactions with protein and cofactors. Biochim Biophys Acta 1767: 509–519

    PubMed  CAS  Google Scholar 

  • Luna VM, Chen Y, Fee JA and Stout CD (2008) Crystal-lographic studies of Xe and Kr binding within the large internal cavity of cytochrome ba3 from Thermus thermophilus: structural analysis and role of oxygen transport channels in the heme-Cu oxidases. Biochemistry 47: 4657–4665

    PubMed  CAS  Google Scholar 

  • Makewicz A, Radundz A and Schmid GH (1995) Structural modifications of the photosynthetic apparatus in the region of photosystem I in Nicotiana tabacum as a consequence of an increased CO2-content of the atmosphere. Z Naturforsch C50: 511–520

    Google Scholar 

  • Makewicz A, Radunz A and Schmid GH (1996) Comparative immunological detection of lipids and carotenoids on peptides of photosystem I from higher plants and cyano-bacteria. Z Naturforsch C51: 319–328

    Google Scholar 

  • Marsh D, Dzikovski BG and Livshits VA (2006) Oxygen profiles in membranes. Biophys J 90: L49–L51

    PubMed  CAS  Google Scholar 

  • Mcauley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ and Jones MR (1999) Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA 96: 14706–14711

    PubMed  CAS  Google Scholar 

  • Meier T, Polzer P, Diederichs K, Welte W and Dimroth P (2005) Structure of the rotor ring of F-Type Na+ -ATPase from Ilyobacter tartaricus. Science 308: 659–662

    PubMed  CAS  Google Scholar 

  • Melkozernov AN and Blankenship RE (2005) Structural and functional organization of the peripheral light-harvesting system in photosystem I. Photosynth Res 85: 33–50

    PubMed  CAS  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry 27: 1–7

    CAS  Google Scholar 

  • Michel H, Epp O and Deisenhofer J (1986) Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J 5: 2445–2451

    PubMed  CAS  Google Scholar 

  • Minoda A, Sonoike K, Okada K, Sato N and Tsuzuki M (2003) Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. FEBS Lett 553: 109–112

    PubMed  CAS  Google Scholar 

  • Morosinotto T and Bassi R (2008) Antenna system of higher plants photosystem I and its interaction with the core complex. In: Renger G (ed) Primary Processes of Photosynthesis, Vol 1. Royal Society of Chemistry, Cambridge, pp. 301–328

    Google Scholar 

  • Murata N, Higashi S-I and Fujimura Y (1990) Glycerolipids in various preparations of photosystem II from spinach chloroplasts. Biochim Biophys Acta 1019: 261–268

    CAS  Google Scholar 

  • Nagy L, Milano F, Dorogi M, Agostiano A, Laczko G, Sze-benyi K, Varo G, Trotta M and Maroti P (2004) Protein/lipid interaction in the bacterial photosynthetic reaction center: phosphatidylcholine and phosphatidylglycerol modify the free energy levels of the quinones. Biochemistry 43: 12913–12923

    PubMed  CAS  Google Scholar 

  • Nakamoto RK, Baylis Scanlon JA and Al-Shawi MK (2008) The rotary mechanism of the ATP synthase. Arch Biochem Biophys 476: 43–50

    PubMed  CAS  Google Scholar 

  • Nelson N and Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5: 971–982

    PubMed  CAS  Google Scholar 

  • Nield J and Barber J (2006) Refinement of the structural model for the photosystem II supercomplex of higher plants. Biochim Biophys Acta 1757: 353–361

    PubMed  CAS  Google Scholar 

  • Nogi T, Fathir I, Kobayashi M, Nozawa T and Miki K (2000) Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. Proc Natl Acad Sci USA 97: 13561–13566

    PubMed  CAS  Google Scholar 

  • Nussberger S, Dörr K, Wang DN and Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356

    PubMed  CAS  Google Scholar 

  • Oberfeld B, Brunner J and Dimroth P (2006) Phospholipids occupy the internal lumen of the c ring of the ATP synthase of Escherichia coli. Biochemistry 45: 1841–1851

    PubMed  CAS  Google Scholar 

  • Ohno T, Satoh K and Katoh S (1986) Chemical composition of purified oxygen-evolving complexes from the thermo-philic cyanobacterium Synechococcus sp. Biochim Biophys Acta 852: 1–8

    CAS  Google Scholar 

  • Pali T, Garab G, Horvath LI and Kota Z (2003) Functional significance of the lipid-protein interface in photosyn-thetic membranes. Cell Mol Life Sci 60: 1591–1606

    PubMed  CAS  Google Scholar 

  • Palsdottir H and Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666: 2–18

    PubMed  CAS  Google Scholar 

  • Peter GF and Thornber JP (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266: 16745–16754

    PubMed  CAS  Google Scholar 

  • Pineau B, Girard-Bascou J, Eberhard S, Choquet Y, Tremo-lieres A, Gerard-Hirne C, Bennardo-Connan A, Decottig-nies P, Gillet S and Wollman FA (2004) A single mutation that causes phosphatidylglycerol deficiency impairs synthesis of photosystem II cores in Chlamydomonas rein-hardtii. Eur J Biochem 271: 329–338

    PubMed  CAS  Google Scholar 

  • Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P and Müller DJ (2005) The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep 6: 1040–1044

    PubMed  CAS  Google Scholar 

  • Prange T, Schiltz M, Pernot L, Colloc'h N, Longhi S, Bourguet W and Fourme R (1998) Exploring hydrophobic sites in proteins with xenon or krypton. Proteins (Structure, Function, Genetics) 30: 61–73

    CAS  Google Scholar 

  • Rappaport F, Diner B and Redding K (2006) Optical measurements of secondary electron transfer in photosystem I. In: Golbeck JH (ed) Photosystem I — The Light-Driven Plas-tocyanin: Ferredoxin Oxidoreductase, Vo l 24. Springer, Dordrecht, pp. 223–244

    Google Scholar 

  • Redding K and Van Der Est A (2006) The directionality of electron transport in photosystem I. In: Golbeck JH (ed) Photosystem I — The Light-Driven Plastocyanin: Ferre-doxin Oxidoreductase, Vol 24. Springer, Dordrecht, pp. 413–437

    Google Scholar 

  • Reifarth F, Christen G, Seeliger AG, Dörmann P, Benning C and Renger G (1997) Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylg-lycerol. Biochemistry 36: 11769–11776

    PubMed  CAS  Google Scholar 

  • Renger G (2007) Oxidative photosynthetic water splitting: energetics, kinetics and mechanism. Photosynth Res 92: 407–425

    PubMed  CAS  Google Scholar 

  • Rhee K-H (2001) Photosystem II: the solid structural era. Annu Rev Biophys Biomol Struct 30: 307–328

    PubMed  CAS  Google Scholar 

  • Rhee, K-H, Morris EP, Zheleva D, Hankamer B, Kühlbrandt W and Barber J (1997) Two-dimensional structure of plant photosystem II at 8-Å resolution. Nature 389: 522–526

    CAS  Google Scholar 

  • Rhee K-H, Morris EP, Barber J and Kühlbrandt W (1998) Three-dimensional structure of the plant photosystem II reaction centre at 8 Å resolution. Nature 396: 283–286

    PubMed  CAS  Google Scholar 

  • Rinyu L, Martin EW, Takahashi E, Maroti P and Wraight CA (2004)Modulation of the free energy of the primary quinone acceptor (QA) in reaction centers from Rhodobacter sphaeroides: contributions from the protein and proteinlipid (cardiolipin) interactions. Biochim Biophys Acta 1655: 93–101

    PubMed  CAS  Google Scholar 

  • Rokka A, Suorsa M, Saleem A, Battchikova N and Aro EM (2005)Synthesis and assembly of thylakoid protein complexes. Multiple assembly steps of photosystem II. Biochem J 388: 159–168

    PubMed  CAS  Google Scholar 

  • Roose JL, Kashino Y and Pakrasi HB (2007) The PsbQ protein defines cyanobacterial photosystem II complexes with highest activity and stability. Proc Natl Acad Sci USA 104: 2548–2553

    PubMed  CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972

    PubMed  CAS  Google Scholar 

  • Saenger W, Jordan P and Krauß N (2002) The assembly of protein subunits and cofactors in photosystem I. Curr Opin Struct Biol 12: 244–254

    PubMed  CAS  Google Scholar 

  • Sakurai I, Shen JR, Leng J, Ohashi S, Kobayashi M and Wada H (2006) Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J Biochem (Tokyo) 140: 201–209

    CAS  Google Scholar 

  • Sakurai I, Mizusawa N, Wada H and Sato N (2007) Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiol 145: 1361–1370

    PubMed  CAS  Google Scholar 

  • Sato N and Murata N (1982) Lipid biosynthesis in the blue-green-alga (cyanobacterium), Anabaena variabilis. 3. UDP-glucose-diacylglycerol glucosyltransferase activity in vitro. Plant Cell Physiol 23: 1115–1120

    CAS  Google Scholar 

  • Sato N, Suda K and Tsuzuki M (2004) Responsibility of phosphatidylglycerol for biogenesis of the PS I complex. Biochim Biophys Acta 1658: 235–243

    PubMed  CAS  Google Scholar 

  • Schubert WD, Klukas O, Saenger W, Witt HT, Fromme P and Krauß N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 280: 297–314

    PubMed  CAS  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H and Müller DJ (2000) Structural biology. Proton-powered turbine of a plant motor. Nature 405: 418–419

    CAS  Google Scholar 

  • Siegenthaler PA (1998) The molecular organization of lipids in thylakoids. In: Siegenthaler PA and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht, pp 119–144

    Google Scholar 

  • Solmaz SR and Hunte C (2008) Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem 283: 17542–17549

    PubMed  CAS  Google Scholar 

  • Standfuss J, Terwisscha Van Scheltinga AC, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photopro-tection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24: 919–928

    PubMed  CAS  Google Scholar 

  • Steffen R, Kelly AA, Huyer J, Doermann P and Renger G (2005) Investigations on the reaction pattern of photo-system II in leaves from Arabidopsis thaliana wild type plants and mutants with genetically modified lipid content. Biochemistry 44: 3134–3142

    PubMed  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413–418

    PubMed  CAS  Google Scholar 

  • Subczynski WK and Wisniewska A (2000) Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Acta Biochim Pol 47: 613–625

    PubMed  CAS  Google Scholar 

  • Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P and Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321: 329–339

    PubMed  CAS  Google Scholar 

  • Van Amerongen H and Croce R (2008) Structure and function of photosystem II light-harvesting proteins (Lhcb) of higher plants. In: Renger G (ed) Primary Processes of Photosynthesis, Vol 1. Royal Society of Chemistry, Cambridge, pp 329–367

    Google Scholar 

  • Van Amerongen H and Dekker JP (2003) Light harvesting in photosystem II. In: Green BR and Parson WW (eds) Light-Harvesting Antennas in Photosynthesis. Kluwer, Dordrecht, pp. 219–251

    Google Scholar 

  • Varco-Merth B, Fromme R, Wang M and Fromme P (2008) Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments. Biochim Bio-phys Acta 1777: 605–612

    CAS  Google Scholar 

  • Vass I and Aro EM (2008) Photoinhibition of photosynthetic electron transport. In: Renger G (ed) Primary Processes of Photosynthesis, Vol 1. Royal Society of Chemistry, Cambridge, pp. 393–425

    Google Scholar 

  • Ventrella A, Catucci L, Mascolo G, Corcelli A and Agos-tiano A (2007) Isolation and characterization of lipids strictly associated to PS II complexes: focus on cardiolipin structural and functional role. Biochim Biophys Acta 1768: 1620–1627

    PubMed  CAS  Google Scholar 

  • Voß R, Radunz A and Schmid GH (1992) Binding of lipids onto polypeptides of the thylakoid membrane. I. Galac-tolipids and sulfolipids as prosthetic groups of the core peptides of the photosystem II complex. Z Naturforsch 47c: 406–415

    Google Scholar 

  • Wada H and Murata N (2007) The essential role of phos-phatidylglycerol in photosynthesis. Photosynth Res 92: 205–215

    PubMed  CAS  Google Scholar 

  • Wydrzynski T and Satoh K (eds) (2005) Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase. Springer, Dordrecht

    Google Scholar 

  • Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L and Deisenhofer J (1997) Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277: 60–66

    PubMed  CAS  Google Scholar 

  • Yamashita E, Zhang H and Cramer WA (2007) Structure of the cytochrome b 6 f complex: quinone analogue inhibitors as ligands of heme cn. J Mol Biol 370: 39–52

    PubMed  CAS  Google Scholar 

  • Yao H, Shi Y, Gao R, Zhang G, Zhang R, Zheng C and Xu B (2006) Isolation of lipids from photosystem I complex and its characterization with high performance liquid chromatography/electrospray ionization mass spectrometry. J Chromatogram B 837: 101–107

    CAS  Google Scholar 

  • Zhang H, Kurisu G, Smith JL and Cramer WA (2003) A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: the cytochrome b 6 f complex of oxygenic photosynthesis. Proc Natl Acad Sci USA 100: 5160–5163

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The structural studies of cyanobacterial PS I and PS II were only possible due to the long term funding provided by the Deutsche Forschungs Gemeinschaft in the frame of the SFBs 312 and 498. We wish to thank J. Biesiadka, M. Broser, D. DiFiore, P. Fromme, A. Gabdulkhakov, K. D. Irrgang, P. Jordan, O. Klukas, B. Loll, C. Lüneberg, P. Orth, W. Saenger and W.-D. Schubert who are all former or current colleagues involved in these projects. In addition we wish to commemorate the enthusiastic involvement of H.T. Witt in these projects in earlier years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kern, J., Zouni, A., Guskov, A., Krauß, N. (2009). Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b 6 f Complex. In: Wada, H., Murata, N. (eds) Lipids in Photosynthesis. Advances in Photosynthesis and Respiration, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2863-1_10

Download citation

Publish with us

Policies and ethics