Lipids in Thylakoid Membranes and Photosynthetic Cells

  • Hajime WadaEmail author
  • Norio Murata
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 30)


The goal of this book is to provide a comprehensive overview of recent advances in plant-lipid research, with special emphasis on the lipids in thylakoid membranes. The determination of the genome sequences of photosynthetic organisms, such as cyanobacteria, algae and higher plants; the development of muta-tional and transgenic techniques; and the development of other analytical methods have had a major impact on plant-lipid research and have advanced our understanding of the functions of individual species of lipids in photosynthesis. In this introductory chapter, we provide a brief summary of the material in subsequent chapters, in which specific topics are covered in greater depth.


Thylakoid Membrane Fatty Acid Desaturases Cyanobacterial Cell Thalassiosira Pseudonana Photosynthetic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acyl-carrier protein


Coenzyme A




Endoplasmic reticulum


Fourier transform infrared






Phosphatidylglycerol phosphate


Photosystem I


Photosystem II




Fatty acid in which X and Y indicate numbers of carbon atoms and double bonds, respectively, and Z, in parenthesis, indicates the position(s) of the double bond(s), counted from the carboxyl terminus of the fatty-acyl chain



The authors are grateful to Dr. Yasushi Kamisaka (National Institute of Advanced Industrial Science and Technology, Japan) for his guidance in the genome-based analysis of genes that are involved in lipid biosynthesis. This work was supported, in part, by the Cooperative Research Program on the Stress Tolerance of Plants of the National Institute for Basic Biology (Japan) to N.M., and by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (Japan) to H.W.


  1. Andersson MX, Larsson KE, Tjellstrom H, Liljenberg C and Sandelius AS (2005) Phosphate-limited oat: the plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280:27578–27586PubMedCrossRefGoogle Scholar
  2. Armbrust WV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demar-est MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WWY, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP and Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  3. Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H and Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:10960–10965PubMedCrossRefGoogle Scholar
  4. Awai K, Kakimoto T, Awai C, Kaneko T, Nakamura Y, Takamiya K, Wada H and Ohta H (2006) Comparative genomic analysis revealed a gene for monoglucosyl-diacylglycerol synthase, an enzyme for photosynthetic membrane lipid synthesis in cyanobacteria. Plant Physiol 141:1120–1127PubMedCrossRefGoogle Scholar
  5. Awai K, Watanabe H, Benning C and Nishida I (2007) Digalactosyldiacylglycerol is required for better photo-synthetic growth of Synechocystis sp. PCC 6803 under phosphate limitation. Plant Cell Physiol 48:1517–1523PubMedCrossRefGoogle Scholar
  6. Babiychuk E, Müller F, Eubel H, Braun H-P, Frentzen M and Kushnir S (2003) Arabidopsis phosphatidylglycerophos-phate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33:899–909PubMedCrossRefGoogle Scholar
  7. Batenburg JJ, Klazinga W and van Golde LMG (1985) Regulation and location of phosphatidylglycerol and phosphatidylinositol synthesis in type II cells isolated from fetal rat lung. Biochim Biophys Acta 833:17–24PubMedCrossRefGoogle Scholar
  8. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret J-P, Chiovitti A, Choi CJ, Coese S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin- Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq M-P, Napoli C, Obornik M, Parker MS, Petit J-L, Porce BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y and Grigoriev IV (2008) The Phaeodac-tylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  9. Bryant D (ed) (1994) The Molecular Biology of Cyanobac-teria. Advances in Photosynthesis and Respiration, Vol 1. Kluwer (now Springer), DordrechtGoogle Scholar
  10. Chintalapati S, Prakash JSS, Gupta P, Ohtani S, Suzuki I, Sakamoto T, Murata N and Shivaji S (2006) A novel Δ9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids. Biochem J 398:207–214PubMedCrossRefGoogle Scholar
  11. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosyn-thetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 618:618–624CrossRefGoogle Scholar
  12. Dörmann P, Balbo I and Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284:2181–2184PubMedCrossRefGoogle Scholar
  13. Elhai J and Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754PubMedCrossRefGoogle Scholar
  14. Fisher M, Kroon JTM, Martindale W, Stuitje AR, Slabas AR and Rafferty JB (2000) The x-ray structure of Brassica napus beta-ketoacyl carrier protein reductase and its implications for substrate binding and catalysis. Struct Fold Des 8:339–347CrossRefGoogle Scholar
  15. Golbeck J (ed) (2006) Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase. Advances in Photosynthesis and Respiration, Vol 24. Springer, DordrechtGoogle Scholar
  16. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A and Saenger W (2009) Cyanobacterial photosystem II at 2.9 Å resolution: role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342PubMedCrossRefGoogle Scholar
  17. Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H and Murata N (2003) Gene-engineered rigidi-fication of membrane lipids enhances the cold induc-ibility of gene expression in Synechocystis. J Biol Chem 278:12191–12198PubMedCrossRefGoogle Scholar
  18. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyano-bacterial photosystem I at 2.5 Å resolution. Nature 411:909–917PubMedCrossRefGoogle Scholar
  19. Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J and Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167:863–874PubMedCrossRefGoogle Scholar
  20. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S. (1996) Sequence analysis of the genome of the unicellular cyano-bacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136 and 185–209PubMedCrossRefGoogle Scholar
  21. Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M and Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213 and 227–253PubMedCrossRefGoogle Scholar
  22. Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Chlamydomonas Annotation Team, JGI Annotation Team, Grigoriev IV, Rokhsar DS and Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–251PubMedCrossRefGoogle Scholar
  23. Ke B (2001) Photosynthesis: Photobiochemistry and Photo-biophysics. Advances in Photosynthesis and Respiration, Vol 10. Kluwer (now Springer), DordrechtGoogle Scholar
  24. Kelly AA, Froehlich JE and Dörmann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–2706PubMedCrossRefGoogle Scholar
  25. Lindqvist Y, Huang WJ, Schneider G and Shanklin J (1996) Crystal structure of Δ9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. EMBO J 15:4081–4092PubMedGoogle Scholar
  26. Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nish-ida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y and Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidi-oschyzon merolae 10D. Nature 428:653–657PubMedCrossRefGoogle Scholar
  27. Müller F and Frentzen M (2001) Phosphatidylglycerophos-phate synthases from Arabidopsis thaliana. FEBS Lett 509:298–302PubMedCrossRefGoogle Scholar
  28. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shinpo S, Sugimoto M, Takeuchi C, Yamada M and Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9:123–130 and 135–148PubMedCrossRefGoogle Scholar
  29. Nakamura Y, Tsuchiya M and Ohta H (2007) Plastidic phos-phatidic acid phosphatases identified in a distinct family of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282:29013–29021PubMedCrossRefGoogle Scholar
  30. Okazaki K, Sato N, Tsuji N, Tsuzuki M and Nishida I (2006) The significance of C16 fatty acids in the sn-2 position of glycerolipids in the photosynthetic growth of Synechocystis sp. PCC 6803. Plant Physiol 141:546–556PubMedCrossRefGoogle Scholar
  31. Olsen JG, Rasmussen AV, von Wettstein-Knowles P and Henriksen A (2004) Structure of the mitochondrial β-ketoacyl-[acyl carrier protein] synthase from Ara-bidopsis and its role in fatty acid synthesis. FEBS Lett 577:170–174PubMedCrossRefGoogle Scholar
  32. Rafferty JB, Simon JW, Baldock C, Artymiuk PJ, Baker PJ, Stuitje AR, Slabas AR and Rice DW (1995) Common themes in redox chemistry emerge from the x-ray structure of oilseed rape (Brassica napus) enoyl acyl carrier protein reductase. Structure 3:927–938PubMedCrossRefGoogle Scholar
  33. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rush-ton PJ, Sanderfoot A, Schween G, Shiu S-H, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS and Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69PubMedCrossRefGoogle Scholar
  34. Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) (1998) The Molecular Biology of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration, Vol 7. Kluwer (now Springer), DordrechtGoogle Scholar
  35. Sakurai I, Mizusawa N, Wada H and Sato N (2007) Diga-lactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiol 145:1361–1370PubMedCrossRefGoogle Scholar
  36. Sato N, and Moriyama T (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular Rho-dophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukaryot Cell 6:1006–1017PubMedCrossRefGoogle Scholar
  37. Siegenthaler P-A and Murata N (eds) (1998) Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis and Respiration, Vol 6. Kluwer (now Springer), DordrechtGoogle Scholar
  38. Stroebel D, Choquet Y, Popot JL and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426:413–418PubMedCrossRefGoogle Scholar
  39. Szalontai B, Nishiyama Y, Gombos Z and Murata N (2000) Membrane dynamics as seen by Fourier transform infrared spectroscopy in a cyanobacterium, Syn-echocystis PCC 6803: the effects of lipid unsaturation and the protein-to-lipid ratio. Biochim Biophys Acta 1509:409–419PubMedCrossRefGoogle Scholar
  40. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  41. Tonon T, Sayanova O, Michaelson LV, Qing R, Harvey D, Larson TR, Li Y, Napier JA and Graham I (2005) Fatty acid desaturases from the microalga Thalassiosira pseu-donana. FEBS J 272:3401–3412PubMedCrossRefGoogle Scholar
  42. Turnbull AP, Rafferty JB, Sedelnikova SE, Slabas AR, Schierer TP, Kroon JTM, Simon JW, Fawcett T, Nishida I, Murata N and Rice DW (2001) Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase. Structure 9:347–353PubMedCrossRefGoogle Scholar
  43. Wada H and Murata N (1998) Membrane lipids in cyano-bacteria. In: Siegenthaler P-A and Murata N (eds) Lip-ids in Photosynthesis: Structure, Function and Genetics, pp. 65–81. Advances in Photosynthesis and Respiration, Vol 6. Kluwer (now Springer), DordrechtCrossRefGoogle Scholar
  44. Williams JGK (1988) Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167:766–778CrossRefGoogle Scholar
  45. Wydrzynski T and Satoh K (eds) (2006) Photosystem II: The Light-Induced Water: Plastoquinone Oxidoreduct-ase. Advances in Photosynthesis and Respiration, Vol 22. Springer, DordrechtGoogle Scholar
  46. Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C and Ben-ning C (2002) The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity. Plant Physiol 129:594–604PubMedCrossRefGoogle Scholar
  47. Yamashita E, Zhang H and Cramer WA (2007) Structure of the cytochrome b 6 f complex: qu\inone analogue inhibitors as ligands of heme c n. J Mol Biol 370:39–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesUniversity of TokyoMeguro-kuJapan
  2. 2.National Institute for Basic Biology, MyodaijiOkazakiJapan

Personalised recommendations