Skip to main content

Fragmentation Selection Strategies in Linear Scaling Methods

  • Chapter
  • First Online:
Linear-Scaling Techniques in Computational Chemistry and Physics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 13))

Abstract

The chemical motivation and the role of molecular fragmentation schemes in various linear scaling quantum chemical computational methods are discussed, with special emphasis on fragmentation based on the properties of molecular electron densities. The special significance of functional groups in fragment selection, the concept and use of delocalized fragments, the “Procrustes Fragmentation” and “Multi-Procrustes Fragmentation” schemes, and the utility of trigonometric weighting in reducing potential errors due to the bias introduced by fragment selection are discussed. The special fragmentation possibilities implied by the Additive Fuzzy Density Fragmentation Principle, and their application in the context of the Adjustable Density Matrix Assembler (ADMA) method are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szekeres Zs, Exner TE, Mezey PG (2005) Fuzzy fragment selection strategies, basis set dependence, and HF – DFT comparisons in the applications of the ADMA method of macromolecular quantum chemistry. Int J Quantum Chem 104:847–860

    Article  CAS  Google Scholar 

  2. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I, J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  3. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J Chem Phys 23:1841–1846

    Article  CAS  Google Scholar 

  4. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations. J Chem Phys 23:2338–2342

    Article  CAS  Google Scholar 

  5. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories. J Chem Phys 23:2343–2346

    Article  CAS  Google Scholar 

  6. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  7. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci USA 76:6062–6065

    Article  CAS  Google Scholar 

  8. Levi M (1982) Electron densities in search of Hamiltonians. Phys Rev A 26:1200–1208

    Article  Google Scholar 

  9. Levy M (1990) Constrianed-search formulation and recent coordinate scaling in density functional theory. Adv Quantum Chem 21:69–79

    Article  CAS  Google Scholar 

  10. Kryachko ES, Ludena EV (1989) Density functional theory of many-electron systems. Kluwer, Dordrecht

    Google Scholar 

  11. Parr R, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York, NY

    Google Scholar 

  12. Riess J, Munch W (1981) The theorem of Hohenberg and Kohn for subdomains of a quantum system. Theor Chim Acta 58:295–300

    Article  CAS  Google Scholar 

  13. Mezey PG (1999) The holographic electron density theorem and quantum similarity measures. Mol Phys 96:169–178

    Article  CAS  Google Scholar 

  14. Mezey PG (1998) Generalized chirality and symmetry deficiency. J Math Chem 23:65–84

    Article  CAS  Google Scholar 

  15. Mezey PG (1999) Holographic electron density shape theorem and its role in drug design and toxicological risk assessment. J Chem Inf Comp Sci 39:224–230

    Article  CAS  Google Scholar 

  16. Mezey PG (2001) The holographic principle for latent molecular properties. J Math Chem 30:299–303

    Article  CAS  Google Scholar 

  17. Mezey PG (2001) A uniqueness theorem on molecular recognition. J Math Chem 30:305–313

    Article  CAS  Google Scholar 

  18. Mezey PG (2007) A fundamental relation of molecular informatics: information carrying properties of density functions. Collect Czech Chem Commun 72:153–163

    Article  CAS  Google Scholar 

  19. Mezey PG (1995) Shape analysis of macromolecular electron densities. Struct Chem 6:261–270

    Article  CAS  Google Scholar 

  20. Mezey PG (1995) Macromolecular density matrices and electron densities with adjustable nuclear geometries. J Math Chem 18:141–168

    Article  CAS  Google Scholar 

  21. Mezey PG (1996) Local shape analysis of macromolecular electron densities. In: Leszczynski J (ed) Computational chemistry: reviews and current trends, vol.1. World Scientific Publishing, Singapore, pp 109–137

    Chapter  Google Scholar 

  22. Mezey PG (1997) Quantum similarity measures and Löwdin’s transform for approximate density matrices and macromolecular forces. Int J Quantum Chem 63:39–48

    Article  CAS  Google Scholar 

  23. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Proc Camb Philol Soc 24:89–110

    Article  CAS  Google Scholar 

  24. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion. Proc Camb Philolo Soc 24:111–132

    Article  CAS  Google Scholar 

  25. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part III. Term values and intensities in series in optical spectra. Proc Camb Philol Soc 24:426–437

    Article  CAS  Google Scholar 

  26. Hartree DR (1929) The wave mechanics of an atom with a non-coulomb central field. Part IV. Further results relating to terms of the optical spectrum. Proc Camb Philol Soc 25:310–314

    Article  CAS  Google Scholar 

  27. Fock V (1930) Naeherungsmethode zur Loesing des quantenmechanischen Mehrkoerperproblems. Z Phys 61:126–148

    Article  Google Scholar 

  28. Roothaan CC (1951) New developments in molecular orbital theory. Rev Mod Phys 23:69–89, ibid. 32:179 (1960)

    Article  CAS  Google Scholar 

  29. Hall GG (1951) The molecular orbital theory of chemical valency. VIII. A method of calculating ionization potentials. Proc Roy Soc London A205:541–552

    Google Scholar 

  30. Walker PD, Mezey PG (1993) Molecular electron density lego approach to molecule building. J Am Chem Soc 115:12423–12430

    Article  CAS  Google Scholar 

  31. Walker PD, Mezey PG (1994) Ab initio quality electron densities for proteins: a MEDLA approach. J Am Chem Soc 116:12022–12032

    Article  CAS  Google Scholar 

  32. Walker PD, Mezey PG (1994) Realistic, detailed images of proteins and tertiary structure elements: ab initio quality electron density calculations for bovine insulin. Can J Chem 72:2531–2536

    Article  CAS  Google Scholar 

  33. Walker PD, Mezey PG (1995) A new computational microscope for molecules: high resolution MEDLA images of Taxol and HIV-1 protease, using additive electron density fragmentation principles and fuzzy set methods. J Math Chem 17:203–234

    Article  CAS  Google Scholar 

  34. Walker PD, Mezey PG (1995) Towards similarity measures for macromolecular bodies: medla test calculations for substituted benzene systems. J Comput Chem 16:1238–1249

    Article  CAS  Google Scholar 

  35. Mezey PG, Walker PD (1997) Fuzzy molecular fragments in drug research. Drug Discov Today (Elsevier Trend Journal) 2:6–11

    Google Scholar 

  36. Mezey PG (1997) Computational microscopy: pictures of proteins. Pharmaceutical News 4:29–34

    CAS  Google Scholar 

  37. Mezey PG (1997) Quantum chemistry of macromolecular shape. Int Rev Phys Chem 16:361–388

    Article  CAS  Google Scholar 

  38. Mezey PG (1999) Combinatorial aspects of biomolecular shape analysis. Bolyai Soc Math Stud 7:323–332

    Google Scholar 

  39. Mezey PG (1996) Functional groups in quantum chemistry. Adv Quantum Chem 27:163–222

    Article  Google Scholar 

  40. Mezey PG (1999) Local electron densities and functional groups in quantum chemsitry. In Surjan PR (ed) Correlation and localization.Topics in current chemistry, vol 203. Springer, Berlin, Heidelberg, New York, NY, pp 167–186

    Chapter  Google Scholar 

  41. Mezey PG (1999) Relations between computational and experimental engineering of molecules from molecular fragments. Molec Eng 8:235–250

    Article  Google Scholar 

  42. Mezey PG (1998) A crystallographic structure refinement approach using Ab initio quality additive fuzzy density fragments. Adv Molec Struct Res 4:115–149

    Article  CAS  Google Scholar 

  43. Szekeres Zs, Mezey PG, Surjan P (2006) Diagonalization-free initial guess to SCF calculations for large molecules. Chem Phys Lett 424:420–424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Szekeres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Szekeres, Z., Mezey, P.G. (2011). Fragmentation Selection Strategies in Linear Scaling Methods. In: Zalesny, R., Papadopoulos, M., Mezey, P., Leszczynski, J. (eds) Linear-Scaling Techniques in Computational Chemistry and Physics. Challenges and Advances in Computational Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2853-2_7

Download citation

Publish with us

Policies and ethics