Skip to main content

Divide-and-Conquer Approaches to Quantum Chemistry: Theory and Implementation

  • Chapter
  • First Online:
Linear-Scaling Techniques in Computational Chemistry and Physics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 13))

Abstract

Recently, the authors implemented the linear-scaling divide-and-conquer (DC) quantum chemical methodologies into the GAMESS-US package, which is available without charge. In this Chapter, we summarized recent developments in the DC methods, namely, the density-matrix-based DC self-consistent field (SCF) and the DC-based post-SCF electron correlation methods. Especially, the DC-based post-SCF calculation is considerably efficient, i.e., its computational time achieves near-linear scaling with respect to the system size [O(N 1)] and the required memory and scratch sizes are hardly dependent on the system size [O(N 0)]. Numerical assessments also revealed the reliability of the DC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knuth DE (1973) The art of computer programming, vol. 3: Sorting and searching. Addison-Wesley, Reading, pp 159–170

    Google Scholar 

  2. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, 2nd ed. Cambridge University Press, Cambridge

    Google Scholar 

  3. Yang W (1991) Phys Rev Lett 66:1438

    CAS  Google Scholar 

  4. Goedecker S (1999) Rev Mod Phys 71:1085

    CAS  Google Scholar 

  5. Wu SY, Jayanthi CS (2002) Phys Rep 358:1

    Google Scholar 

  6. Imamura A, Aoki Y, Maekawa K (1991) J Chem Phys 95:5419

    CAS  Google Scholar 

  7. Yang W (1991) Phys Rev A 44:7823

    CAS  Google Scholar 

  8. Yang W (1992) J Mol Struct Theochem 255:461

    Google Scholar 

  9. York D, Lu JP, Yang W (1994) Phys Rev B 49:8526

    CAS  Google Scholar 

  10. Lu JP, Yang W (1994) Phys Rev B 49:11421

    CAS  Google Scholar 

  11. Lee C, Yang W (1992) J Chem Phys 96:2408

    CAS  Google Scholar 

  12. Zhao Q, Yang W (1995) J Chem Phys 102:9598

    CAS  Google Scholar 

  13. Zhu T, Pan W, Yang W (1996) Phys Rev B 53:12713

    CAS  Google Scholar 

  14. Zhou Z (1993) Chem Phys Lett 203:396

    CAS  Google Scholar 

  15. Warschkow O, Dyke JM, Ellis DE (1998) J Comput Phys 143:70

    CAS  Google Scholar 

  16. Shimojo F, Kalia RK, Nakano A, Vashishta P (2005) Comput Phys Commun 167:151

    CAS  Google Scholar 

  17. Vashishta P, Kalia RK, Nakano A (2006) J Phys Chem B 110:3727

    CAS  Google Scholar 

  18. Nakano A, Kalia RK, Nomura K, Sharma A, Vashishta P, Shimojo F, van Duin AC, Goddard WA, Biswas R, Srivastava D (2007) Comput Mat Sci 38:642

    CAS  Google Scholar 

  19. Shimojo F, Kalia RK, Nakano A, Vashishta P (2008) Phys Rev B 77:085103

    Google Scholar 

  20. Ozaki T (2006) Phys Rev B 74:245101

    Google Scholar 

  21. Ozaki T, Terakura K (2001) Phys Rev B 64:195126

    Google Scholar 

  22. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York, NY

    Google Scholar 

  23. Yang W, Lee T-S (1995) J Chem Phys 103:5674

    CAS  Google Scholar 

  24. Szabo A, Ostlund NS (1989) Modern quantum chemistry. McGraw-Hill, New York, NY

    Google Scholar 

  25. Walker PD, Mezey PG (1993) J Am Chem Soc 115:12423

    CAS  Google Scholar 

  26. Mezey PG (1995) J Math Chem 18:141

    CAS  Google Scholar 

  27. Lee T-S, York DM, Yang W (1996) J Chem Phys 105:2744

    CAS  Google Scholar 

  28. York DM, Lee T-S, Yang W (1996) Chem Phys Lett 263:297

    CAS  Google Scholar 

  29. York DM, Lee T-S, Yang W (1996) J Am Chem Soc 118:10940

    CAS  Google Scholar 

  30. York DM, Lee T-S, Yang W (1998) Phys Rev Lett 80:5011

    CAS  Google Scholar 

  31. Lewis JP, Liu S, Lee T-S, Yang W (1999) J Comput Phys 151:242

    CAS  Google Scholar 

  32. Khandogin J, York DM (2002) J Phys Chem B 106:7693

    CAS  Google Scholar 

  33. Khandogin J, Musier-Forsyth K, York DM (2003) J Mol Biol 330:993

    CAS  Google Scholar 

  34. Khandogin J, York DM (2004) Proteins 56:724

    CAS  Google Scholar 

  35. Dixon SL, Merz KM Jr (1996) J Chem Phys 104:6643

    CAS  Google Scholar 

  36. van der Vaart A, Gogonea V, Dixon SL, Merz KM Jr (2000) J Comput Chem 21:1494

    Google Scholar 

  37. Dixon SL, Merz KM Jr (1997) J Chem Phys 107:879

    CAS  Google Scholar 

  38. Gogonea V, Merz KM Jr (1999) J Phys Chem A 103:5171

    CAS  Google Scholar 

  39. van der Vaart A, Merz KM Jr (1999) J Phys Chem A 103:3321

    Google Scholar 

  40. van der Vaart A, Merz KM Jr (1999) J Am Chem Soc 121:9182

    Google Scholar 

  41. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325

    CAS  Google Scholar 

  42. Cabrera-Trujillo JM, Robles J (2001) Phys Rev B 64:165408

    Google Scholar 

  43. Pan W, Lee T-S, Yang W (1998) J Comput Chem 19:1101

    CAS  Google Scholar 

  44. Vincent JJ, Dixon SL, Merz KM Jr (1998) Theor Chem Acc 99:220

    CAS  Google Scholar 

  45. Gallant RT, St-Amant A (1996) Chem Phys Lett 256:569

    CAS  Google Scholar 

  46. Goh SK, St-Amant A (1997) Chem Phys Lett 264:9

    CAS  Google Scholar 

  47. Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:3396

    CAS  Google Scholar 

  48. Goh SK, St-Amant A (1997) Chem Phys Lett 274:429

    CAS  Google Scholar 

  49. Goh SK, Gallant RT, St-Amant A (1998) Int J Quantum Chem 69:405

    CAS  Google Scholar 

  50. Goh SK, Sosa CP, St-Amant A (1998) Theor Chem Acc 99:197

    CAS  Google Scholar 

  51. Shaw DM, St-Amant A (2004) J Theor Comput Chem 3:419

    CAS  Google Scholar 

  52. Akama T, Kobayashi M, Nakai H (2007) J Comput Chem 28:2003

    CAS  Google Scholar 

  53. Akama T, Fujii A, Kobayashi M, Nakai H (2007) Mol Phys 105:2799

    CAS  Google Scholar 

  54. Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 125:204106

    Google Scholar 

  55. Ayala PY, Scuseria GE (1999) J Chem Phys 110:3660

    CAS  Google Scholar 

  56. Surján PR (2005) Chem Phys Lett 406:318

    Google Scholar 

  57. Kobayashi M, Nakai H (2006) Chem Phys Lett 420:250

    CAS  Google Scholar 

  58. Kobayashi M, Imamura Y, Nakai H (2007) J Chem Phys 127:074103

    Google Scholar 

  59. Kobayashi M, Nakai H (2008) J Chem Phys 129:044103

    Google Scholar 

  60. Kobayashi M, Nakai H (2009) Int J Quantum Chem 109:2227

    CAS  Google Scholar 

  61. Kobayashi M, Nakai H (2009) J Chem Phys 131:114108

    Google Scholar 

  62. Pulay P (1983) Chem Phys Lett 100:151

    CAS  Google Scholar 

  63. Saebø S, Pulay P (1993) Annu Rev Phys Chem 44:213

    Google Scholar 

  64. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  65. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 1167–1189

    Google Scholar 

  66. Kobayashi M, Akama T, Nakai H (2009) J Comput Chem Jpn 8:1

    CAS  Google Scholar 

  67. Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904

    CAS  Google Scholar 

  68. Fedorov DG, Kitaura K (eds) (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC Press, Boca Raton, FL

    Google Scholar 

  69. Zhang DW, Zhang JZH (2003) J Chem Phys 119:3599

    CAS  Google Scholar 

  70. Li S, Li W, Fang T (2005) J Am Chem Soc 127:7215

    CAS  Google Scholar 

  71. Deev V, Collins MA (2005) J Chem Phys 122:154102

    Google Scholar 

  72. Gadre SR, Shirsat RN, Limaye AC (1994) J Phys Chem 98:9165

    CAS  Google Scholar 

  73. Ganesh V, Dongare RK, Balanarayan P, Gadre SR (2006) J Chem Phys 125:104109

    CAS  Google Scholar 

  74. Friedrich J, Dolg M (2008) J Chem Phys 129:244105

    Google Scholar 

  75. Friedrich J, Dolg M (2009) J Chem Theory Comput 5:287

    CAS  Google Scholar 

  76. Li S, Shen J, Li W, Jiang Y (2006) J Chem Phys 125:074109

    Google Scholar 

  77. Li W, Piecuch P, Gour JR, Li S (2009) J Chem Phys 131:114109

    Google Scholar 

  78. Mauri F, Galli G, Car R (1993) Phys Rev B 47:9973

    Google Scholar 

  79. Ordejon P, Drabold DA, Grumbach MP, Martin RM (1993) Phys Rev B 48:14646

    CAS  Google Scholar 

  80. Kim J, Mauri F, Galli G (1995) Phys Rev B 52:1640

    CAS  Google Scholar 

  81. Scuseria GE (1999) J Phys Chem A 103:4782

    CAS  Google Scholar 

  82. Niklasson AMN, Challacombe M (2004) Phys Rev Lett 92:193001

    Google Scholar 

  83. Li X-P, Nunes RW, Vanderbilt D (1993) Phys Rev B 47:10891

    CAS  Google Scholar 

  84. Galli G, Parrinello M (1992) Phys Rev Lett 69:3547

    CAS  Google Scholar 

  85. Kőhalmi D, Szabados Á, Surján PR (2005) Phys Rev Lett 95:013002

    Google Scholar 

  86. Strain MC, Scuseria GE, Frisch MJ (1996) Science 271:51

    CAS  Google Scholar 

  87. White CA, Head-Gordon M (1994) J Chem Phys 101:6593

    Google Scholar 

  88. Choi CH, Ruedenberg K, Gordon MS (2001) J Comput Chem 22:1484

    CAS  Google Scholar 

  89. Füsti-Molnár L, Pulay P (2002) J Chem Phys 117:7827

    Google Scholar 

  90. Kurashige Y, Nakajima T, Hirao K (2007) J Chem Phys 126:144106

    Google Scholar 

  91. Watson MA, Kurashige Y, Nakajima T, Hirao K (2008) J Chem Phys 128:054105

    Google Scholar 

  92. Schwegler E, Challacombe M (1996) J Chem Phys 105:2726

    CAS  Google Scholar 

  93. Burant JC, Scuseria GE, Frisch MJ (1996) J Chem Phys 105:8969

    CAS  Google Scholar 

  94. Ochsenfeld C, White CA, Head-Gordon M (1998) J Chem Phys 109:1663

    CAS  Google Scholar 

  95. Akama T, Kobayashi M, Nakai H (2009) Int J Quantum Chem 109:2706

    CAS  Google Scholar 

  96. Pulay P (1980) Chem Phys Lett 73:393

    CAS  Google Scholar 

  97. Pulay P (1982) J Comput Chem 3:556

    CAS  Google Scholar 

  98. Rabuck AD, Scuseria GE (1999) J Chem Phys 110:695

    CAS  Google Scholar 

  99. Almlöf J (1991) Chem Phys Lett 181:319

    Google Scholar 

  100. Häser M (1993) Theor Chim Acta 87:147

    Google Scholar 

  101. Nakai H (2002) Chem Phys Lett 363:73

    CAS  Google Scholar 

  102. Kawamura Y, Nakai H (2004) J Comput Chem 25:1882

    CAS  Google Scholar 

  103. Nakai H, Kikuchi Y (2005) J Theor Comput Chem 4:317

    CAS  Google Scholar 

  104. Baba T, Takeuchi M, Nakai H (2006) Chem Phys Lett 424:193

    CAS  Google Scholar 

  105. Nakai H, Kurabayashi Y, Katouda M, Atsumi T (2007) Chem Phys Lett 438:132

    CAS  Google Scholar 

  106. Imamura Y, Takahashi A, Nakai H (2007) J Chem Phys 126:034103

    Google Scholar 

  107. Imamura Y, Nakai H (2008) J Comput Chem 29:1555

    CAS  Google Scholar 

  108. Imamura Y, Baba T, Nakai H (2008) Int J Quantum Chem 108:1316

    CAS  Google Scholar 

  109. Mulliken RS (1955) J Chem Phys 23:1833

    CAS  Google Scholar 

  110. Nesbet RK (1969) Atomic Bethe-Goldstone equations In: LeFebvre R, Moser C (eds) Advances in chemical physics, vol. 14. Wiley, Chichester, pp 1–34

    Google Scholar 

  111. Grimme S (2006) J Chem Phys 124:034108

    Google Scholar 

  112. Becke AD (1988) Phys Rev A 38:3098

    CAS  Google Scholar 

  113. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  114. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    CAS  Google Scholar 

  115. Urban M, Noga J, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041

    CAS  Google Scholar 

  116. Kowalski K, Piecuch P (2000) J Chem Phys 113:18

    CAS  Google Scholar 

  117. Kowalski K, Piecuch P (2000) J Chem Phys 113:5644

    CAS  Google Scholar 

  118. Piecuch P, Kucharski SA, Kowalski K, Musiał M (2002) Comput Phys Commun 149:71

    CAS  Google Scholar 

  119. Fletcher GD, Schmidt MW, Bode BM, Gordon MS (2000) Comput Phys Commun 128:190

    CAS  Google Scholar 

  120. Fedorov DG, Olson RM, Kitaura K, Gordon MS, Koseki S (2004) J Comput Chem 25:872

    CAS  Google Scholar 

  121. Dunning TH Jr (1989) J Chem Phys 90:1007

    CAS  Google Scholar 

  122. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  123. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    CAS  Google Scholar 

  124. Inadomi Y, Nakano T, Kitaura K, Nagashima U (2002) Chem Phys Lett 364:139

    CAS  Google Scholar 

  125. Tsuneyuki S, Kobori T, Akagi K, Sodeyama K, Terakura K, Fukuyama H (2009) Chem Phys Lett 476:104

    CAS  Google Scholar 

  126. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    CAS  Google Scholar 

  127. Grimme S (2003) J Chem Phys 118:9095

    CAS  Google Scholar 

  128. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    CAS  Google Scholar 

  129. Xiang HJ, Liang WZ, Yang J, Hou JG, Zhu Q (2005) J Chem Phys 123:124105

    CAS  Google Scholar 

  130. Pruitt SR, Fedorov DG, Kitaura K, Gordon MS (2010) J Chem Theory Comput 6:1

    CAS  Google Scholar 

  131. Kobayashi M, Yoshikawa T, Nakai H (2010) Chem Phys Lett 500:172

    Google Scholar 

  132. Touma T, Kobayashi M, Nakai H (2010) Chem Phys Lett 485:247

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. M. S. Gordon and Dr. M. W. Schmidt at Iowa State University for their support when implementing our method to GAMESS program. We are also grateful to many group members, especially Dr. T. Akama, for their contributions. Some of the present calculations were performed at the Research Center for Computational Science (RCCS), Okazaki Research Facilities, National Institutes of Natural Sciences (NINS). The studies were supported in part by a Grant-in-Aid for Scientific Research on Priority Areas “Molecular Theory for Real Systems” “KAKENHI 18066016,” the Next Generation Integrated Nanoscience Simulation Software Project, and the Global COE “Practical Chemical Wisdom” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. A project research grant for “Development of high-performance computational environment for quantum chemical calculation and its assessment” from the Research Institute for Science and Engineering (RISE) at Waseda University is gratefully acknowledged. One of the authors (MK) was indebted to the Research Fellowship for Young Scientists from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Nakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kobayashi, M., Nakai, H. (2011). Divide-and-Conquer Approaches to Quantum Chemistry: Theory and Implementation. In: Zalesny, R., Papadopoulos, M., Mezey, P., Leszczynski, J. (eds) Linear-Scaling Techniques in Computational Chemistry and Physics. Challenges and Advances in Computational Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2853-2_5

Download citation

Publish with us

Policies and ethics