Skip to main content

Mathematical Formulation of the Fragment Molecular Orbital Method

  • Chapter
  • First Online:
Linear-Scaling Techniques in Computational Chemistry and Physics

Abstract

The fragment molecular orbital (FMO) method is a computational scheme applied to the conventional molecular orbital theories, which reduces their scaling from N 3… N 7 to a nearly linear scaling, where N is the system size. FMO provides an accurate treatment of large molecules such as proteins and molecular clusters, and it can be efficiently parallelized to achieve high scaling on massively parallel computers. The main purpose of this chapter is to focus on the derivation of the equations and to provide a concise mathematical description of FMO. A brief summary of the recent applications of FMO is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hua W, Fang T, Li W, Yu J-G, Li S (2008) J Phys Chem A 112:10864

    Article  CAS  Google Scholar 

  2. Rahalkar AP, Ganesh V, Gadre SR (2008) J Chem Phys 129:234101

    Article  CAS  Google Scholar 

  3. He J, Di Paola C, Kantorovich L (2009) J Chem Phys 130:144104

    Article  CAS  Google Scholar 

  4. Söderhjelm S, Ryde U (2009) J Phys Chem A 113:617

    Article  CAS  Google Scholar 

  5. Xie W, Orozco M, Truhlar DG, Gao J (2009) J Chem Theory Comp 5:459

    Article  CAS  Google Scholar 

  6. Leverentz HR, Truhlar DG (2009) J Chem Theory Comput 5:1573

    Article  CAS  Google Scholar 

  7. Suárez E, Díaz N, Suárez D (2009) J Chem Theory Comput 5:1667

    Article  CAS  Google Scholar 

  8. Gordon MS, Mullin JM, Pruitt SR, Roskop LB, Slipchenko LV, Boatz JA (2009) J Phys Chem B 113:9646

    Article  CAS  Google Scholar 

  9. Mata RA, Stoll H, Cabral BJC (2009) J Chem Theory Comput 5:1829

    Article  CAS  Google Scholar 

  10. Le H-A, Lee AM, Bettens RPA (2009) J Phys Chem A 113:10527

    Article  CAS  Google Scholar 

  11. Pomogaev V, Pomogaeva A, Aoki Y (2009) J Phys Chem A 113:1429

    Article  CAS  Google Scholar 

  12. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Chem Phys Lett 313:701

    Article  CAS  Google Scholar 

  13. Fedorov DG, Kitaura K (2007) J Phys Chem A 111:6904

    Article  CAS  Google Scholar 

  14. Fedorov DG, Kitaura K (2006) In: Starikov EB, Lewis JP, Tanaka S (eds) Modern methods for theoretical physical chemistry of biopolymers, Elsevier, Amsterdam, pp 3–38

    Google Scholar 

  15. Nakano T, Mochizuki Y, Fukuzawa K, Amari S, Tanaka S (2006) In: Starikov EB, Lewis JP, Tanaka S (eds) Modern methods for theoretical physical chemistry of biopolymers, Elsevier, Amsterdam, pp 39–52

    Google Scholar 

  16. Goto H, Obata S, Kamakura T, Nakayama N, Sato M, Nakajima Y, Nagashima U, Watanabe T, Inadomi Y, Ito M, Nishikawa T, Nakano T, Nilsson L, Tanaka S, Fukuzawa K, Inagaki Y, Hamada M, Chuman H (2006) In: Starikov EB, Lewis JP, Tanaka S (eds) Modern methods for theoretical physical chemistry of biopolymers, Elsevier, Amsterdam, pp 227–248

    Google Scholar 

  17. Fedorov DG, Kitaura K (eds) (2009) The Fragment Molecular Orbital Method, Practical Applications to Large Molecular Systems, CRC Press, Boca Raton, FL

    Google Scholar 

  18. Sugiki S, Kurita N, Sengoku Y, Sekino H (2003) Chem Phys Lett 382:611

    Article  CAS  Google Scholar 

  19. Fedorov DG, Kitaura K (2004) J Chem Phys 120:6832

    Article  CAS  Google Scholar 

  20. Fedorov DG, Kitaura K (2006) Chem Phys Lett 433:182

    Article  CAS  Google Scholar 

  21. Yasuda K, Yamaki D (2006) J Chem Phys 125:154101

    Article  CAS  Google Scholar 

  22. Fedorov DG, Kitaura K (2009) J Chem Phys 131:171106

    Article  CAS  Google Scholar 

  23. Fedorov DG, Kitaura K (2007) J Comput Chem 28:222

    Article  CAS  Google Scholar 

  24. Fedorov DG, Jensen JH, Deka RC, Kitaura K (2008) J Phys Chem A 112:11808

    Article  CAS  Google Scholar 

  25. Fedorov DG, Avramov PV, Jensen JH, Kitaura K (2009) Chem Phys Lett 477:169

    Article  CAS  Google Scholar 

  26. Kairys V, Jensen JH (2000) J Phys Chem A 104:6656

    Article  CAS  Google Scholar 

  27. Suenaga M (2008) J Comput Chem Jpn 7:33 [in Japanese]

    Article  CAS  Google Scholar 

  28. Facio can be downloaded from http://www1.bbiq.jp/zzzfelis/Facio.html

  29. Inadomi Y, NakanoT, Kitaura K, Nagashima U (2002) Chem Phys Lett 364:139

    Article  CAS  Google Scholar 

  30. Fujita T, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S (2009) Chem Phys Lett 478:295

    Article  CAS  Google Scholar 

  31. Fedorov DG, Kitaura K (2004) J Chem Phys 121:2483

    Article  CAS  Google Scholar 

  32. Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K (2004) Chem Phys Lett 396:473

    Article  CAS  Google Scholar 

  33. Mochizuki Y, Nakano T, Koikegami S, Tanimori S, Abe Y, Nagashima U, Kitaura K (2004) Theor Chem Acc 112:442

    Article  CAS  Google Scholar 

  34. Fedorov DG, Ishimura K, Ishida T, Kitaura K, Pulay P, Nagase S (2007) J Comput Chem 28:1476

    Article  CAS  Google Scholar 

  35. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  36. Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and Applications of Computational Chemistry, the first forty years, Elsevier, Amsterdam, pp 1167–1189, 2005

    Google Scholar 

  37. Fletcher GD, Schmidt MW, Gordon MS (1999) Adv Chem Phys 110:267

    Article  CAS  Google Scholar 

  38. Ishimura K, Pulay P, Nagase S (2006) J Comput Chem 27:407

    Article  CAS  Google Scholar 

  39. Fletcher GD, Schmidt MW, Bode BM, Gordon MS (2000) Comp Phys Commun 128:190

    Article  CAS  Google Scholar 

  40. Ishikawa T, Kuwata K (2009) Chem Phys Lett 474:195

    Article  CAS  Google Scholar 

  41. Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175

    Article  CAS  Google Scholar 

  42. Fedorov DG, Kitaura K (2005) J Chem Phys 123:134103

    Article  CAS  Google Scholar 

  43. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  Google Scholar 

  44. Ranghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  Google Scholar 

  45. Olson RM, Bentz JL, Kendall RA, Schmidt MW, Gordon MS (2007) J Theor Comput Chem 3:1312

    Article  Google Scholar 

  46. Kowalski K, Piecuch P (2000) J Chem Phys 113:18

    Article  CAS  Google Scholar 

  47. Fedorov DG, Kitaura K (2004) Chem Phys Lett 389:129

    Article  CAS  Google Scholar 

  48. Becke AD (1993) J Chem Phys 98:5648; Stephens PJ, Devlin FJ, Chablowski CF, Frisch MJ (1994) J Phys Chem 98:11623; Hertwig RH, Koch W (1997) Chem Phys Lett 268:345

    Article  CAS  Google Scholar 

  49. Tawada Y, Tsuneda T, Yanagisawa S, Yanai Y, Hirao K (2004) J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  50. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  51. Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849

    Article  CAS  Google Scholar 

  52. Perdew JP, Ruzsinsky A, Csonka GI, Constantin LA Sun J (2009) Phys Rev Lett 103:026403

    Article  CAS  Google Scholar 

  53. Fedorov DG, Kitaura K (2005) J Chem Phys 122:054108

    Article  CAS  Google Scholar 

  54. Pruitt SR, Fedorov DG, Kitaura K, Gordon MS (2010) J Chem Theory Comput 6:1

    Article  CAS  Google Scholar 

  55. Aikens CM, Fletcher GD, Schmidt MW, Gordon MS (2006) J Chem Phys 124:014107

    Article  CAS  Google Scholar 

  56. Piecuch P, Włoch M (2005) J Chem Phys 123:224105

    Article  CAS  Google Scholar 

  57. Włoch M, Gour JR, Piecuch P (2007) J Phys Chem A 111:11359

    Article  CAS  Google Scholar 

  58. Fedorov DG, Ishida T, Kitaura K (2005) J Phys Chem A 109:2638

    Article  CAS  Google Scholar 

  59. Some preliminary results can be found in, Fedorov DG, Ishida T, Uebayasi M, Kitaura K (2007) J Phys Chem A 111:2722

    Article  CAS  Google Scholar 

  60. Fukunaga H, Fedorov DG, Chiba M, Nii K, Kitaura K (2008) J Phys Chem A 112:10887

    Article  CAS  Google Scholar 

  61. Chiba M, Fedorov DG, Kitaura K (2007) Chem Phys Lett 444:346

    Article  CAS  Google Scholar 

  62. Chiba M, Fedorov DG, Kitaura K (2007) J Chem Phys 127:103108

    Article  CAS  Google Scholar 

  63. Chiba M, Fedorov DG, Kitaura K (2008) J Comput Chem 29:2667

    Article  CAS  Google Scholar 

  64. Chiba M, Fedorov DG, Nagata T, Kitaura K (2009) Chem Phys Lett 474:227

    Article  CAS  Google Scholar 

  65. Mochizuki Y, Koikegami S, Amari S, Segawa K, Kitaura K, Nakano T (2005) Chem Phys Lett 406:283

    Article  CAS  Google Scholar 

  66. Head-Gordon M, Rico RJ, Oumi M, Lee TJ (1994) Chem Phys Lett 219:21

    Article  CAS  Google Scholar 

  67. Mochizuki Y, Tanaka K, Yamashita K, Ishikawa T, Nakano T, Amari S, Segawa K, Murase T, Tokiwa H, Sakurai M (2007) Theor Chem Acc 117:541

    Article  CAS  Google Scholar 

  68. Mochizuki Y, Tanaka K (2007) Chem Phys Lett 443:389

    Article  CAS  Google Scholar 

  69. Ikegami T, Ishida T, Fedorov DG, Kitaura K, Inadomi Y, Umeda H, Yokokawa M, Sekiguchi S (2010) J Comput Chem 31:447

    CAS  Google Scholar 

  70. Tagami A, Ishibashi N, Kato D, Taguchi N, Mochizuki Y, Watanabe H, Ito M, Tanaka S (2009) Chem Phys Lett 472:118

    Article  CAS  Google Scholar 

  71. Foulkes WMC, Mitas L, Needs RJ, Rajagopal G (2001) Rev Mod Phys 73:33

    Article  CAS  Google Scholar 

  72. Maezono R, Watanabe H, Tanaka S, Towler MD, Needs RJ (2007) J Phys Soc Jpn 76:064301

    Article  CAS  Google Scholar 

  73. Kitaura K, Sugiki SI, Nakano T, Komeiji Y, Uebayasi M (2001) Chem Phys Lett 336:163

    Article  CAS  Google Scholar 

  74. Nagata T, Fedorov DG, Kitaura K (2009) Chem Phys Lett 475:124

    Article  CAS  Google Scholar 

  75. Komeiji Y, Mochizuki Y, Nakano T (2010) Chem Phys Lett 484:380

    Article  CAS  Google Scholar 

  76. Yamaguchi Y, Schaefer HF III, Osamura Y, Goddard J (1994) A New Dimension to Quantum Chemistry, Analytical Derivative Methods in Ab Initio Molecular Electronic Structure Theory, Oxford University Press, New York

    Google Scholar 

  77. Fedorov DG, Kitaura K, Li H, Jensen JH, Gordon MS (2006) J Comput Chem 27:976

    Article  CAS  Google Scholar 

  78. Nagata T, Fedorov DG, Kitaura K, Gordon MS (2009) J Chem Phys 131:024101

    Article  CAS  Google Scholar 

  79. Ishikawa T, Mochizuki Y, Nakano T, Amari S, Mori H, Honda H, Fujita T, Tokiwa H, Tanaka S, Komeiji Y, Fukuzawa K, Tanaka K, Miyoshi E (2006) Chem Phys Lett 427:159

    Article  CAS  Google Scholar 

  80. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  81. Li H, Fedorov DG, Nagata T, Kitaura K, Jensen JH, Gordon MS (2010) J Comput Chem 31:778

    Article  CAS  Google Scholar 

  82. Su P, Li H (2009) J Chem Phys 130:074109

    Article  CAS  Google Scholar 

  83. Stone AJ (1981) Chem Phys Lett 83:233

    Article  CAS  Google Scholar 

  84. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Gramer D, Basch H, Cohen D (1996) J Chem Phys 108:1968

    Article  Google Scholar 

  85. Chen W, Gordon MS (1996) J Chem Phys 105, 11081

    Article  CAS  Google Scholar 

  86. Komeiji Y, Mochizuki Y, Nakano T, Fedorov DG (2009) J Mol Struct (THEOCHEM) 898:2

    Article  CAS  Google Scholar 

  87. Komeiji Y, Nakano T, Fukuzawa K, Ueno Y, Inadomi Y, Nemoto T, Uebayasi M, Fedorov DG, Kitaura K (2003) Chem Phys Lett 372:342

    Article  CAS  Google Scholar 

  88. Mochizuki Y, Komeiji Y, Ishikawa T, Nakano T, Yamataka H (2007) Chem Phys Lett 437:66

    Article  CAS  Google Scholar 

  89. Sato M, Yamataka H, Komeiji Y, Mochizuki Y, Ishikawa T, Nakano T (2008) J Am Chem Soc 130:2396

    Article  CAS  Google Scholar 

  90. Komeiji Y, Ishikawa T, Mochizuki Y, Yamataka H, Nakano T (2008) J Comput Chem 30:40

    Article  CAS  Google Scholar 

  91. Ishimoto T, Tokiwa H, Teramae H, Nagashima U (2004) Chem Phys Lett 387:460

    Article  CAS  Google Scholar 

  92. Ishimoto T, Tokiwa H, Teramae H, Nagashima U (2005) J Chem Phys 122:094905

    Article  CAS  Google Scholar 

  93. Shiga M, Tachikawa M, Miura S (2001) J Chem Phys 115:9149

    Article  CAS  Google Scholar 

  94. Fujita T, Watanabe H, Tanaka S (2009) J Phys Soc Jpn 78:104723

    Article  CAS  Google Scholar 

  95. Yoshida T, Fujita T, Chuman H (2009) Curr Comp-Aided Drug Des 5:38

    Article  CAS  Google Scholar 

  96. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325

    Article  CAS  Google Scholar 

  97. Mochizuki Y, Fukuzawa K, Kato A, Tanaka S, Kitaura K, Nakano T (2005) Chem Phys Lett 410:247

    Article  CAS  Google Scholar 

  98. Ishikawa T, Mochizuki Y, Amari S, Nakano T, Tokiwa H, Tanaka S, Tanaka K (2007) Theor Chem Acc 118:937

    Article  CAS  Google Scholar 

  99. Ishikawa T, Mochizuki Y, Amari S, Nakano T, Tanaka S, Tanaka K (2008) Chem Phys Lett 463:189

    Article  CAS  Google Scholar 

  100. Rauhut G, Pulay P, Werner H-J (1998) J Comput Chem 19:1241

    Article  CAS  Google Scholar 

  101. Boys SF, Bernardi F (1970) Mol Phys 19:533

    Article  Google Scholar 

  102. IshikawaT, IshikuraT, Kuwata K (2009) J Comput Chem 30:2594

    Article  CAS  Google Scholar 

  103. Kamiya M, Hirata S, Valiev M (2008) J Chem Phys 128:074103

    Article  CAS  Google Scholar 

  104. Schwenke DW, Truhlar DG (1985) J Chem Phys 82:2418; (1986) 84:4113; (1987) 86:3760

    Article  CAS  Google Scholar 

  105. Tamura K, Watanabe T, Ishimoto T, Umeda H, Inadomi Y, Nagashima U (2008) Bull Chem Soc Jpn 81:254

    Article  CAS  Google Scholar 

  106. Sekino H, Sengoku Y, Sugiki S-I, Kurita N (2003) Chem Phys Lett 378:589

    Article  CAS  Google Scholar 

  107. Tsuneyuki S, Kobori T, Akagi K, Sodeyama K, Terakura K, Fukuyama H (2009) Chem Phys Lett 476:104

    Article  CAS  Google Scholar 

  108. Watanabe T, Inadomi Y, Fukuzawa K, Nakano T, Tanaka S, Nilsson L, Nagashima U (2007) J Phys Chem B 111:9621

    Article  CAS  Google Scholar 

  109. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269

    Article  CAS  Google Scholar 

  110. Okiyama Y, Watanabe H, Fukuzawa K, Nakano T, Mochizuki Y, Ishikawa T, Tanaka S, Ebina K (2007) Chem Phys Lett 449, 329

    Article  CAS  Google Scholar 

  111. Okiyama Y, Watanabe H, Fukuzawa K, Nakano T, Mochizuki Y, Ishikawa T, Ebina K, Tanaka S (2009) Chem Phys Lett 467, 417

    Article  CAS  Google Scholar 

  112. Gao Q, Yokojima S, Kohno T, Ishida T, Fedorov DG, KitauraK , Fujihira M, Nakamura S (2007) Chem Phys Lett 445:331

    Article  CAS  Google Scholar 

  113. Sekino H, Matsumura N, Sengoku Y (2007) Comput Lett 3:423

    Article  CAS  Google Scholar 

  114. Ditchfield R (1974) Mol Phys 27:789

    Article  CAS  Google Scholar 

  115. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  116. Keith TA, Bader RWF (1993) Chem Phys Lett 210:223

    Article  CAS  Google Scholar 

  117. Mochizuki Y, Ishikawa T, Tanaka K, Tokiwa H, Nakano T, Tanaka S (2006) Chem Phys Lett 418:418

    Article  CAS  Google Scholar 

  118. Tachikawa M, Mori K, Suzuki K, Iguchi K (1998) Int J Quant Chem 70:491

    Article  CAS  Google Scholar 

  119. Tachikawa M (2002) Chem Phys Lett 360:494

    Article  CAS  Google Scholar 

  120. Ishimoto T, Tachikawa M, Nagashima U (2009) Int J Quant Chem 109:2677

    Article  CAS  Google Scholar 

  121. Ishimoto T, Tachikawa M, Nagashima U (2006) J Chem Phys 124:014112

    Article  CAS  Google Scholar 

  122. Auer B, Pak MV, Hammes-Schiffer S (2010) J Phys Chem C 114:5582

    Article  CAS  Google Scholar 

  123. Chakraborty A, Pak MV, Hammes-Schiffer S (2008) Phys Rev Lett 101:153001

    Article  CAS  Google Scholar 

  124. Amari S, Aizawa M, Zhang J, Fukuzawa K, Mochizuki Y, Iwasawa Y, Nakata K, Chuman H, Nakano T (2006) J Chem Inf Comput Sci 46:221

    Article  CAS  Google Scholar 

  125. Fischer B, Fukuzawa K, Wenzel W (2008) Proteins Struct Funct Bioinf 70:1264

    Article  CAS  Google Scholar 

  126. Ikegami T, Ishida T, Fedorov DG, Kitaura K, Inadomi Y, Umeda H, Yokokawa M, Sekiguchi S 2005 In: Proceedings of Supercomputing 2005, IEEE Computer Society, Seattle, WA

    Google Scholar 

  127. Fedorov DG, Olson RM, Kitaura K, Gordon MS, Koseki S (2004) J Comput Chem 25:872

    Article  CAS  Google Scholar 

  128. Mochizuki Y, Yamashita K, Murase T, Nakano T, Fukuzawa K, Takematsu K, Watanabe H, Tanaka S (2008) Chem Phys Lett 457:396

    Article  CAS  Google Scholar 

  129. Tada M, Nagasima T, Udagawa T, Tachikawa M, Sugawara H (2009) J Mol Struc (THEOCHEM) 897:149

    Article  CAS  Google Scholar 

  130. Sawada T, Fedorov DG, Kitaura K (2009) Int J Quant Chem 109:2033

    Article  CAS  Google Scholar 

  131. Taguchi N, Mochizuki Y, Nakano T, Amari S, Fukuzawa K, Ishikawa T, Sakurai M, Tanaka S (2009) J Phys Chem B 113:1153

    Article  CAS  Google Scholar 

  132. Kistler KA, Matsika S (2009) J Phys Chem A 113:12396

    Article  CAS  Google Scholar 

  133. Takematsu K, Fukuzawa K, Omagari K, Nakajima S, Nakajima K, Mochizuki Y, Nakano T, Watanabe H, Tanaka S (2009) J Phys Chem B 113:4991

    Article  CAS  Google Scholar 

  134. Sawada T, Hashimoto T, Tokiwa H, Suzuki T, Nakano H, Ishida H, Kiso M, Suzuki Y (2009) J Mol Genet Med 3:133

    CAS  Google Scholar 

  135. He X, Fusti-Molnar L, Cui G, Merz KM Jr (2009) J Phys Chem B 113:5290

    Article  CAS  Google Scholar 

  136. Nagase K, Kobayashi H, Yoshikawa E, Kurita N (2009) J Mol Graph Mod 28:46

    Article  CAS  Google Scholar 

  137. Nakamura T, Yamaguchi A, Kondo H, Watanabe H, Kurihara T, Esaki N, Hirono S, Tanaka S (2009) J Comput Chem 30:2625

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Next Generation SuperComputing Project, Nanoscience Program (MEXT, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Nagata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nagata, T., Fedorov, D.G., Kitaura, K. (2011). Mathematical Formulation of the Fragment Molecular Orbital Method. In: Zalesny, R., Papadopoulos, M., Mezey, P., Leszczynski, J. (eds) Linear-Scaling Techniques in Computational Chemistry and Physics. Challenges and Advances in Computational Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2853-2_2

Download citation

Publish with us

Policies and ethics