Skip to main content

Linear Scaling for Metallic Systems by the Korringa-Kohn-Rostoker Multiple-Scattering Method

  • Chapter
  • First Online:
Linear-Scaling Techniques in Computational Chemistry and Physics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 13))

  • 1631 Accesses

Abstract

A Green function (GF) linear-scaling technique based on the Korringa-Kohn-Rostoker (KKR) multiple scattering method is presented for Hohenberg-Kohn-Sham density functional calculations of metallic systems. Contrary to most other methods the KKR-GF method does not use a basis-set expansion to solve the Kohn-Sham equation for the wavefunctions, but directly determines the Kohn-Sham Green function by exploiting a reference system concept. An introduction to the KKR-GF method is given and it is shown how linear-scaling is obtained by the combined use of a repulsive reference system, which leads to sparse matrix equations, iterative solution of these equations and a spatial truncation of the Green function in the sense of Kohn’s principle of nearsightedness of electronic matter. The suitability of the technique for metallic systems with thousands of atoms is illustrated by model calculations for large supercells and its usefulness for computing on massively parallel supercomputers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A relatively recent description of important issues can be found in [3].

  2. 2.

    The symbol \(O(N^\alpha)\) denotes as usual an increase proportional to N α for large values of N.

  3. 3.

    An elementary derivation using a Green function formalism as presented below is given in [20].

  4. 4.

    For an elementary introduction to classical Green functions and their analytical properties the textbook of Economou [21] is a good source.

  5. 5.

    Several different notations have been used in the historical development of the KKR-GF method. In this chapter the most concise one introduced in [25] is used.

References

  1. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  2. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  3. Papanikolaou N, Zeller R, Dederichs PH (2002) J Phys Condens Matter 16:2799

    Article  Google Scholar 

  4. Prodan E, Kohn W (2005) Proc Natl Acad Sci USA 102:11635

    Article  CAS  Google Scholar 

  5. Kohn W (1996) Phys Rev Lett 76:3168

    Article  CAS  Google Scholar 

  6. Yang W (1991) Phys Rev Lett 66:1438

    Article  CAS  Google Scholar 

  7. Goedecker S (1999) Rev Mod Phys 71:1085

    Article  CAS  Google Scholar 

  8. Wang Y, Stocks GM, Shelton WA, Nicholson DM, Szotek Z, Temmerman WM (1995) Phys Rev Lett 75:2867

    Article  CAS  Google Scholar 

  9. Abrikosov IA, Niklasson AM, Simak SI, Johansson B, Ruban AV, Skriver HL (1996) Phys Rev Lett 76:4203

    Article  CAS  Google Scholar 

  10. Abrikosov IA, Simak SI, Johansson B, Ruban AV, Skriver HL (1983) Phys Rev B 56:9319

    Article  Google Scholar 

  11. Smirnov AV, Johnson DD (2001) Phys Rev B 64:235129

    Article  Google Scholar 

  12. Goedecker S (1998) Phys Rev B 58:3501

    Article  CAS  Google Scholar 

  13. Ismail-Beigi S, Arias TA (1999) Phys Rev Lett 82:2127

    Article  CAS  Google Scholar 

  14. Skylaris C-K, Haynes PD, Mostofi AA, Payne MC (2005) J Phys Condens Matter 17:5757

    Article  CAS  Google Scholar 

  15. Ozaki T (2005) Phys Rev B 74:245101

    Article  Google Scholar 

  16. Korringa J (1947) Physica 13:392

    Article  Google Scholar 

  17. Kohn W, Rostoker N (1954) Phys Rev 94:1111

    Article  CAS  Google Scholar 

  18. Lax M (1951) Rev Mod Phys 23:287

    Article  Google Scholar 

  19. Lord Rayleigh (1892) Philos Mag 34:481

    Google Scholar 

  20. Zeller R (1987) J Phys C Solid State Phys 20:2347

    Article  Google Scholar 

  21. Economou EN (1979) Green’s functions in quantum physics. Springer, Berlin

    Google Scholar 

  22. Bruus H, Flensberg K (2004) Matter physics: an introduction. Oxford University Press, Oxford

    Google Scholar 

  23. Zeller R, Braspenning PJ (1982) Solid State Commun 42:701

    Article  CAS  Google Scholar 

  24. Braspenning PJ, Zeller R, Lodder A, Dederichs PH (1984) Phys Rev B 29:703

    Google Scholar 

  25. Zeller R (2004) J Phys Condens Matter 16:6453

    Article  CAS  Google Scholar 

  26. Zeller R, Deutz J, Dederichs PH (1982) Solid State Commun 44:993

    Article  CAS  Google Scholar 

  27. Mermin ND, Phys Rev (1965) 137:A1441

    Google Scholar 

  28. Wildberger K, Lang P, Zeller R, Dederichs PH (1995) Phys Rev B 52:11502

    Article  CAS  Google Scholar 

  29. Drittler B, Weinert M, Zeller R, Dederichs PH (1989) Phys Rev B 39:930

    Article  CAS  Google Scholar 

  30. Asato M, Settels A, Hoshino T, Asada T, Blügel S, Zeller R, Dederichs PH (1999) Phys Rev B 60:5202

    Article  CAS  Google Scholar 

  31. Papanikolaou N, Zeller R, Dederichs PH, Stefanou N (1997) Phys Rev B 55:4157

    Google Scholar 

  32. Hellmann H (1937) Einführung in die Quantenchemie. Deuticke, Leipzig

    Google Scholar 

  33. Feynman RP (1939) Phys Rev 56:340

    Article  CAS  Google Scholar 

  34. Harris J, Jones RO, Müller JE (1981) J Chem Phys 75:3904

    Article  CAS  Google Scholar 

  35. Papanikolaou N, Zeller R, Dederichs PH, Stefanou N (1997) Comput Math Sci 8:131

    Article  CAS  Google Scholar 

  36. Settels A, Schroeder K, Korhonen T, Papanikolaou N, Aretz M, Zeller R, Dederichs PH (2000) Solid State Commun 113:239

    Article  Google Scholar 

  37. Settels A, Korhonen T, Papanikolaou N, Zeller R, Dederichs PH (1999) Phys Rev Lett 83:4369

    Article  CAS  Google Scholar 

  38. Korhonen T, Settels A, Papanikolaou N, Zeller R, Dederichs PH (2000) Phys Rev B 62:452

    Article  CAS  Google Scholar 

  39. Zeller R (2008) Philos Mag 88:2807

    Article  CAS  Google Scholar 

  40. Eisenbach M, Zhou C-G, Nicholson DM, Brown G, Larkin J, Schulthess TC (2009) In: Proceedings of the conference on High Performance Computing Networking, Storage and Analysis, ACM 2009, http://doi.acm.org/10.1145/1654059.1654125

  41. Wang F, Landau DP (2001) Phys Rev Lett 86:2050

    Article  CAS  Google Scholar 

  42. Freund RW, Nachtigal NM (1991) Numer Math 60:315

    Article  Google Scholar 

  43. Freund RW (1993) SIAM J Sci Comput 14:470

    Article  Google Scholar 

  44. Andersen OK, Jepsen O (1984) Phys Rev Lett 53:2571

    Article  CAS  Google Scholar 

  45. Andersen OK, Postnikov AV, Yu S, Savrasov S (1992) In: Butler WH, Dederichs PH, Gonis A, Weaver RL (eds) Application of multiple scattering theory to materials science, MRS symposia proceedings no. 253. Materials Research Society, Pittsburgh, PA, p 37

    Google Scholar 

  46. Zeller R, Dederichs PH, Újfalussy B, Szunyogh L, Weinberger P (1995) Phys Rev B 52:8807

    Article  CAS  Google Scholar 

  47. Andersen OK, Jepsen O, Krier G (1994) In: Kumar V, Andersen OK, Mookerjee A (eds) Lectures on methods of electronic structure calculations. World Scientific, Singapore

    Google Scholar 

  48. Wildberger K, Zeller R, Dederichs PH (1997) Phys Rev B 55:10074

    Article  CAS  Google Scholar 

  49. Zeller R (1997) Phys Rev B 55:9400

    Article  CAS  Google Scholar 

  50. Nachtigal NM, Shelton WA, Stocks GM (1994) Combining the QMR method with first principles electronic structure codes. ORNL technical report, ORNL/TM-12873

    Google Scholar 

  51. Smirnov AV, Johnson DD (2002) Solid State Commun 148:74

    CAS  Google Scholar 

  52. Anderson DG (1965) J Assoc Comput Mach 12:547

    Article  Google Scholar 

  53. Eyert V (1996) J Comput Phys 124:271

    Article  Google Scholar 

  54. Zeller R (2008) J Phys Condens Matter 20:294215

    Article  Google Scholar 

  55. Chetty N, Weinert M, Rahman TS, Davenport JW (1995) Phys Rev B 52:6313

    Article  Google Scholar 

  56. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  57. Zeller R (1993) Int J Mod Phys C 4:1109

    Article  Google Scholar 

  58. Danos M, Maximon LC (1965) J Math Phys 6:766

    Article  Google Scholar 

  59. Zeller R (1988) Phys Rev B 38:5993

    Article  Google Scholar 

  60. Newton RG (1992) J Math Phys 33:44

    Article  Google Scholar 

  61. Drittler B, Weinert M, Zeller R, Dederichs PH (1991) Solid State Commun 79:31

    Article  CAS  Google Scholar 

  62. Drittler B (1991) Dissertation. Rheinisch-Westfälische Technische Hochschule Aachen

    Google Scholar 

Download references

Acknowledgments

It is my pleasure to thank all people for the discussions I had, in particular on linear scaling and on the use of general potentials in the KKR-GF method. Because it is impossible to include all appropriate references, I apologize for using mainly references associated to the work in Jülich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Zeller .

Editor information

Editors and Affiliations

Appendix

Appendix

By using Gegenbauer’s addition theorem [58] for Hankel functions the free space Green function can be written in an almost separable form as

$$G^0 ({\textbf r},\ {{\textbf r}'};\ E) = - \textrm{i} \sqrt E \sum_{l=0}^{\infty} \sum_{m=-l}^{m=l} h^{(1)}_l (r_> \sqrt E) j_l ( r_< \sqrt E) Y_{lm} ({\hat{\textbf r}}) Y_{lm} ({\hat{\textbf r}}') \: ,$$
((17-33))

where the individual terms are products of r dependent and r dependent functions. Here \(Y_{lm},\ h^{(1)}_l\) and j l are real spherical harmonics, spherical Hankel functions of the first kind and spherical Bessel functions. Expression (17-33) is in a separated form with respect to the angular variables \({\hat{\textbf r}} = {\textbf r} / r\) and \({\hat{\textbf r}}' = {{\textbf r}'} / r'\). For the radial variables separation is not complete because of the restriction \(r_<\,{=}\,\min (r,r')\) and \(r_>\,{=}\,\max (r,\ r')\) and thus (17-33) is called semi-separable. Often a shorthand notation is introduced by using a combined index \(L=lm\) and by defining products of Hankel and Bessel functions with real spherical harmonics by \(H_L ({\textbf r} ;\ E) = - \textrm{i} \sqrt E h^{(1)}_l (r \sqrt E) Y_{lm} ({\hat{\textbf r}})\) and \(J_L ({\textbf r};\; E) = j_l (r \sqrt E) Y_{lm} ({\hat{\textbf r}})\). Then (17-33) can be written in a more compact form as

$$G^0 ({\textbf r},\ {{\textbf r}'};\ E) = \sum_L^{\infty} H_L ({{\textbf r}_>} ;\ E) J_L ( {{\textbf r}_<} ;\ E) \: ,$$
((17-34))

where r > is the vector r or r with larger length and r < the one with smaller length. The multiple-scattering expression (17-17) for the Green function in cell-centered coordinates is then obtained by using the addition theorem of spherical Hankel functions in the form

$$H_L({\textbf r} + {{\textbf R}^n} -{{\textbf R}^{n'}};\; E) = \sum_{L'}^{\infty} G^{0,nn'}_{LL'} (E) J_{L'}({\textbf r};\; E) \: ,$$
((17-35))

which is valid for \(r < |{{\textbf R}^n} -{{\textbf R}^{n'}}|\), with the free space Green function matrix elements

$$G^{0,nn'}_{LL'} (E) = 4 \pi (1 - \delta_{nn'} ) \sum_{L''} \textrm{i}^{l-l'+l''} C_{LL'L''} H_{L''}({{\textbf R}^n} - {{\textbf R}^{n'}} ;\ E) \: .$$
((17-36))

Here δ nn′ indicates that the free space Green function matrix elements vanish for \({{\textbf R}^n} = {{\textbf R}^{n'}}\) and \(C_{LL'L''}\) are Gaunt coefficients defined as

$$C_{LL'L''} = \int_{4 \pi} Y_L({\hat{\textbf r}}) Y_{L'}({\hat{\textbf r}}) Y_{L''}({\hat{\textbf r}}) \textrm{d} {\hat{\textbf r}}$$
((17-37))

which vanish for \(l'' > l + l'\) so that the sum in (17-36) contains a finite number of terms.

In the past confusion for the validity of the full-potential KKR-GF method was caused by the spatial restrictions necessary in (17-34) and (17-35). The restriction \(r < |{{\textbf R}^n}-{{\textbf R}^{n'}}|\) necessary in (17-35) means that the distance from the center of a cell to the point farthest away on the boundary of this cell must be smaller than the distance between centers of adjacent cells. This restriction is not serious, it can always be satisfied if necessary by introducing additional cells not occupied by atoms (empty cells). The restriction for the arguments in Hankel and Bessel functions in (17-33) and (17-34) means that (17-35) can be applied directly only for \(r > r'\), whereas for \(r < r'\) it must be used for \(H_L({{\textbf r}'} - {{\textbf R}^n} + {{\textbf R}^{n'}} ;\ E)\). This makes the double sum in (17-17) conditionally convergent and convergent results are only obtained if L and L are put to infinity in correct order. The spatial restriction has also imposed doubt on the validity of the Green function expression (17-18) for general potentials. It is however elementary to show [20, 25] that (17-18) with appropriately defined quantities directly follows from expression (17-17) if all sums are restricted to a finite number of terms. For practical calculations the question of convergence for high angular momentum contributions seems to be unimportant as the good agreement of calculated total energies and forces with those obtained by other density functional methods and experiment illustrates (see Section 17.3.4). Mathematically, convergence has been demonstrated for the so-called empty lattice with a constant non-zero potential [59] and more generally for the full potential by rather sophisticated techniques [20, 60].

The regular and irregular single-scattering wavefunctions \(R^n_L({\textbf r};\; E)\) and \(S^n_L({\textbf r};\; E)\) are defined by integral equations

$$R^n_L({\textbf r};\ E) = J^n_L({\textbf r};\ E) + \int_n G^0 ({\textbf r},{{\textbf r}'};\ E) v^n_{eff} ({{\textbf r}'}) R^n_L({{\textbf r}'};\ E) \textrm{d} {\textbf r}$$
((17-38))

and

$$S^n_L({\textbf r};\ E) = \sum_{L'} \beta_{LL'}^n (E) H_{L'} ({\textbf r};\ E) + \int_n G^0 ({\textbf r},{{\textbf r}'};\ E) v^n_{eff} ({{\textbf r}'}) S^n_L({{\textbf r}'};\ E) \textrm{d} {\textbf r} \: ,$$
((17-39))

where the matrix

$$\beta_{LL'}^n (E) = \delta_{LL'} - \int_n S^n_L ({\textbf r} ;\ E) v^n_{eff} ({\textbf r} ) J_{L'} ({\textbf r} ;\ E) d{\textbf r}$$
((17-40))

is defined implicitly by the irregular wavefunctions. The single-cell t matrix is defined by

$$t^n_{LL'} (E) = \int_n J_L({\textbf r};\ E) v^n_{eff} ({\textbf r} ) R^n_{L'} ({\textbf r};\ E) \textrm{d} {\textbf r} \: .$$
((17-41))

Details about the numerical treatment of the single-cell equations (17-38), (17-39), (17-40) and (17-41) can be found in [61, 62].

In periodic systems the atomic positions can be written as \({{\textbf R}^n} = {{\textbf R}^{\mu}} + {{\textbf s}^m}\) where R μ denotes lattice vectors and s m positions of the atoms in the unit cell. Then (17-19) has the form

$$G^{\mu m, \mu' m'}_{L L'} (E) = G^{r,\mu m, \mu' m'}_{L L'} (E) + \sum_{\mu'' m'' L''L'''}^{\infty} G^{r,\mu m, \mu'' m''}_{L L''}(E) \Delta t^{m''}_{L'' L'''} (E) \\ G^{\mu'' m'', \mu' m'}_{L''' L'}(E), $$
((17-42))

where due to the translational lattice invariance the t matrix difference does not depend on μ and the Green function matrix elements depend only on the difference vector \({{\textbf R}^{\mu}} - {{\textbf R}^{\mu'}}\). The infinite sum over μ can be treated by lattice Fourier transformation

$$G^{m m'}_{LL'} ({{\textbf k}};\ E) = \sum_{\mu}^{\infty} G^{\mu m,\mu' m'}_{L L'} (E) \textrm{e}^{-\textrm{i} {{\textbf k}} ({{\textbf R}^{\mu}} -{{\textbf R}^{\mu'}})}$$
((17-43))

and an analogous equation for the reference Green function matrix elements. Because of the translational invariance the index μ in (17-43) can be chosen arbitrarily, for instance as \(\mu' =0\). After Fourier transformation the equation

$$G^{mm'}_{LL'}({{\textbf k}} ;\ E) = G^{r,mm'}_{LL'} ({{\textbf k}} ;\ E) + \sum^{\infty}_{m'' L'' L'''} G^{r,mm''}_{LL''} ({{\textbf k}} ;\ E) \Delta t^{m''}_{L'' L'''} (E) G^{m''m'}_{L''L'} ({{\textbf k}} ;\ E) \:,$$
((17-44))

which has the same form as (17-19), must be solved at a set of k points in reciprocal space. The results are used to approximate

$$G^{\mu m, \mu' m'}_{L L'} (E) = \frac{1}{\varOmega_{BZ}} \int G^{m m'}_{L L'} ({{\textbf k}} ;\ E) \textrm{e}^{\textrm{i} {{\textbf k}} ({{\textbf R}^{\mu}} - {{\textbf R}^{\mu'}})} \textrm{d} {{\textbf k}} \: ,$$
((17-45))

the Fourier transformation back to real space, by a sampling procedure. Here Ω BZ is the volume of the Brillouin zone and only elements with \(\mu = \mu'\) and \(m=m'\) are needed for the density.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zeller, R. (2011). Linear Scaling for Metallic Systems by the Korringa-Kohn-Rostoker Multiple-Scattering Method. In: Zalesny, R., Papadopoulos, M., Mezey, P., Leszczynski, J. (eds) Linear-Scaling Techniques in Computational Chemistry and Physics. Challenges and Advances in Computational Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2853-2_17

Download citation

Publish with us

Policies and ethics