Skip to main content

Methods for Hartree-Fock and Density Functional Theory Electronic Structure Calculations with Linearly Scaling Processor Time and Memory Usage

  • Chapter
  • First Online:
Linear-Scaling Techniques in Computational Chemistry and Physics

Abstract

We discuss algorithms that can be used to calculate electron densities using computer resources – memory and processor time – that increase only linearly with system size. We focus on the Hartree-Fock and density functional theories and calculations using Gaussian basis sets. However, many of the approaches discussed here are applicable also for other methods and for any local basis. Particular attention is directed towards error control and how to avoid the use of the ad-hoc selected parameters and threshold values often associated with computational approximations employed to reach linear scaling. The discussed aspects include multipole methods, linear scaling computation of the Hartree-Fock exchange and density functional theory exchange-correlation matrices, hierarchic representation of sparse matrices, and density matrix purification. The article also describes how these different parts are put together to achieve linear scaling for the entire Hartree-Fock or density functional theory calculation, controlling errors in the self-consistent field procedure by considering rotations of the occupied subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goedecker S (1999) Rev Mod Phys 71:1085

    Article  CAS  Google Scholar 

  2. Bowler DR, Miyazaki T, Gillan MJ (2002) J Phys Condens Matter 14:2781

    CAS  Google Scholar 

  3. Wu SY, Jayanthi CS (2002) Phys Rep 358:1

    Article  Google Scholar 

  4. Rudberg E, Rubensson EH, Sałek P Ergo (2009) Version 2.0: a quantum chemistry program for large scale self-consistent field calculations. http://www.ergoscf.org

  5. Rudberg E, Rubensson EH, Sałek P (2008) J Chem Phys 128:184106

    Article  Google Scholar 

  6. Rubensson EH (2008) Matrix algebra for quantum chemistry. PhD thesis, Department of Theoretical Chemistry, Royal Institute of Technology, Stockholm

    Google Scholar 

  7. Rudberg E (2007) Quantum chemistry for large systems. PhD thesis, Department of Theoretical Chemistry, Royal Institute of Technology, Stockholm

    Google Scholar 

  8. Rubensson EH, Rudberg E, Sałek P (2008) J Math Phys 49:032103

    Article  Google Scholar 

  9. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory Wiley, Chichester

    Google Scholar 

  10. Pulay P (1980) Chem Phys Lett 73:393

    Article  CAS  Google Scholar 

  11. Pulay P (1982) J Comput Chem 3:556

    Article  CAS  Google Scholar 

  12. Benzi M, Kouhia R, Tuma M (2001) Comput Meth Appl Mech Eng 190:6533

    Article  Google Scholar 

  13. Rubensson EH, Rudberg E, Sałek P (2007) J Comput Chem 28:2531

    Article  CAS  Google Scholar 

  14. Rubensson EH, Bock N, Holmström E, Niklasson AMN (2008) J Chem Phys 128:104105

    Article  Google Scholar 

  15. Lea Thøgersen (2005) Optimization of densities in Hartree-Fock and density-functional theory, Atomic orbital based response Theory, and Benchmarking for radicals. PhD thesis, Department of Chemistry, University of Aarhus, Aarhus

    Google Scholar 

  16. Kudin KN, Scuseria GE (2007) Math Model Num Anal 41:281

    Article  Google Scholar 

  17. Zerner MC, Hehenberger M (1979) Chem Phys Lett 62:550

    Article  CAS  Google Scholar 

  18. Cancès E, Le Bris C (2000) Int J Quantum Chem 79:82

    Article  Google Scholar 

  19. Häser M, Ahlrichs R (1989) J Comput Chem 10:104

    Article  Google Scholar 

  20. Rudberg E, Sałek P (2006) J Chem Phys 125:084106

    Article  Google Scholar 

  21. Greengard L, Rokhlin V (1987) J Comput Phys 73:325

    Article  Google Scholar 

  22. Schmidt KE, Lee MA (1991) J Stat Phys 63:1223

    Article  Google Scholar 

  23. Panas I, Almlöf, J, Feyereisen, MW (1991) Int J Quantum Chem 40:797

    Article  CAS  Google Scholar 

  24. Panas I, Almlöf J (1992) Int J Quantum Chem 42:1073

    Article  CAS  Google Scholar 

  25. White CA, Johnson BG, Gill PMW, Head-Gordon M (1994) Chem Phys Lett 230:8

    Article  CAS  Google Scholar 

  26. White CA, Head-Gordon M (1994) J Chem Phys 101:6593

    Article  Google Scholar 

  27. Challacombe M, Schwegler E, Almlöf J (1995) J Chem Phys 104:4685

    Article  Google Scholar 

  28. Challacombe M, Schwegler E (1997) J Chem Phys 106:5526

    Article  CAS  Google Scholar 

  29. White CA, Johnson BG, Gill PMW, Head-Gordon M (1996) Chem Phys Lett 253:268

    Article  CAS  Google Scholar 

  30. Strain MC, Scuseria GE, Frisch MJ (1996) Science 271:51

    Article  CAS  Google Scholar 

  31. Choi CH, Ruedenberg K, Gordon MS (2001) J Comput Chem 22:1484

    Article  CAS  Google Scholar 

  32. Sierka M, Hogekamp A, Ahlrichs R (2003) J Chem Phys 118:9136

    Article  CAS  Google Scholar 

  33. Watson MA, Sałek P, Macak P, Helgaker T (2004) J Chem Phys 121:2915

    Article  CAS  Google Scholar 

  34. Gan CK, Tymczak C, Challacombe M (2004) J Chem Phys 121:6608

    Article  CAS  Google Scholar 

  35. Schwegler E, Challacombe M (1996) J Chem Phys 105:2726

    Article  CAS  Google Scholar 

  36. Burant JC, Scuseria GE (1996) J Chem Phys 105:8969

    Article  CAS  Google Scholar 

  37. Schwegler E, Challacombe M, Head-Gordon M (1997) J Chem Phys 106:9708

    Article  CAS  Google Scholar 

  38. Ochsenfeld C, White CA, Head-Gordon M (1998) J Chem Phys 109:1663

    Article  CAS  Google Scholar 

  39. Schwegler E, Challacombe M (1999) J Chem Phys 111:6223

    Article  CAS  Google Scholar 

  40. Ochsenfeld C (2000) Chem Phys Lett 327:216

    Article  CAS  Google Scholar 

  41. Lambrecht DS, Ochsenfeld C (2005) J Chem Phys 123:184101

    Article  Google Scholar 

  42. Aquilante F, Pedersen TB, Lindh R (2007) J Chem Phys 126:194106

    Article  Google Scholar 

  43. Murray CW, Handy NC, Laming GJ (1993) Mol Phys 78:997

    Article  CAS  Google Scholar 

  44. Challacombe M (2000) J Chem Phys 113:10037

    Article  CAS  Google Scholar 

  45. Treutler O, Ahlrichs R (1995) J Chem Phys 102:346

    Article  CAS  Google Scholar 

  46. Lebedev VI, vychisl, Zh (1975) Mat mat Fiz 45:48

    Google Scholar 

  47. Lindh R, Malmqvist PA, Gagliardi L (2001) Theor Chem Acc 106:178

    Article  CAS  Google Scholar 

  48. Becke AD (1988) J Chem Phys 88:2547

    Article  CAS  Google Scholar 

  49. Stratmann RE, Scuseria GE, Frisch MJ (1996) Chem Phys Lett 257:213

    Article  CAS  Google Scholar 

  50. Rudberg E, Rubensson EH, Sałek P (2009) J Chem Theory Comput 5:80

    Article  CAS  Google Scholar 

  51. Sankey OF, Drabold DA, Gibson A (1994) Phys Rev B 50:1376

    Article  CAS  Google Scholar 

  52. Bekas C, Kokiopoulou E, Saad Y, SIAM J (2008) Matrix Anal Appl 30:397

    Google Scholar 

  53. Drabold DA, Sankey OF (1993) Phys Rev Lett 70:3631

    Google Scholar 

  54. Wang LW, Zunger A (1994) J Chem Phys 100:2394

    Article  CAS  Google Scholar 

  55. Gao B, Jiang J, Liu K, Wu Z, Lu W, Luo Y (2007) J Comput Chem 29:434

    Article  Google Scholar 

  56. McWeeny R (1956) Proc R Soc London Ser A 235:496

    Article  CAS  Google Scholar 

  57. Heath MT (1997) Scientific computing: an introductory survey. McGraw-Hill, Singapore

    Google Scholar 

  58. Li XP, Nunes RW, Vanderbilt D (1993) Phys Rev B 47:10891

    Article  CAS  Google Scholar 

  59. Millam JM, Scuseria GE (1997) J Chem Phys 106:5569

    Article  CAS  Google Scholar 

  60. Daw MS (1993) Phys Rev B 47:10895

    Article  Google Scholar 

  61. Challacombe M (1999) J Chem Phys 110:2332

    Article  CAS  Google Scholar 

  62. Helgaker T, Larsen H, Olsen J, Jørgensen P (2000) Chem Phys Lett 327:397

    Article  CAS  Google Scholar 

  63. Dyan A, Dubot P, Cenedese P (2005) Phys Rev B 72:125104

    Article  Google Scholar 

  64. Larsen H, Olsen J, Jørgensen P, Helgaker T (2001) J Chem Phys 115:9685

    Article  CAS  Google Scholar 

  65. Shao Y, Saravanan C, Head-Gordon M, White CA (2003) J Chem Phys 118:6144

    Article  CAS  Google Scholar 

  66. Goedecker S, Colombo L (1994) Phys Rev Lett 73:122

    Article  CAS  Google Scholar 

  67. Goedecker S, Teter M (1995) Phys Rev B 51:9455

    Article  CAS  Google Scholar 

  68. Baer R, Head-Gordon M (1997) J Chem Phys 107:10003

    Article  CAS  Google Scholar 

  69. Bates KR, Daniels AD, Scuseria GE (1998) J Chem Phys 109:3308

    Article  CAS  Google Scholar 

  70. Liang W, Saravanan C, Shao Y, Baer R, Bell AT, Head-Gordon M (2003) J Chem Phys 119:4117

    Article  CAS  Google Scholar 

  71. Silver RN, Roeder H, Voter AF, Kress JD (1996) J Comput Phys 124:115

    Article  CAS  Google Scholar 

  72. Palser AHR, Manolopoulos DE (1998) Phys Rev B 58:12704

    Article  CAS  Google Scholar 

  73. Niklasson AMN (2002) Phys Rev B 66:155115

    Article  Google Scholar 

  74. Niklasson AMN, Tymczak CJ, Challacombe M (2003) J Chem Phys 118:8611

    Article  CAS  Google Scholar 

  75. Holas A (2001) Chem Phys Lett 340:552

    Article  CAS  Google Scholar 

  76. Mazziotti DA (2003) Phys Rev E 68:066701

    Article  Google Scholar 

  77. Xiang HJ, Liang WZ, Yang J, Hou JG, Zhu Q (2005) J Chem Phys 123:124105

    Article  CAS  Google Scholar 

  78. Pino R, Scuseria GE (2002) Chem Phys Lett 360:117

    Article  CAS  Google Scholar 

  79. Rubensson EH, Rudberg E, Sałek P (2008) J Chem Phys 128:074106

    Article  Google Scholar 

  80. Paterson MS, Stockmeyer L, SIAM (1973) J Comput 2:60

    Google Scholar 

  81. Saravanan C, Shao Y, Baer R, Ross PN, Head-Gordon M (2003) J Comput Chem 24:618

    Article  CAS  Google Scholar 

  82. Maslen PE, Ochsenfeld C, White CA, Lee MS, Head-Gordon M (1998) J Phys Chem A 102:2215

    Article  CAS  Google Scholar 

  83. Rubensson EH, Rudberg E, Sałek P (2009) J Comput Chem 30:974

    Article  CAS  Google Scholar 

  84. Rubensson EH, Rudberg E, Sałek P (2007) Proceedings of PARA’06, Springer LNCS 4699:90

    Google Scholar 

  85. Gotoblas. http://www.tacc.utexas.edu/resources/software/#blas

  86. Automatically tuned linear algebra software (ATLAS). http://mathatlas.sourceforge.net/

  87. Intel math kernel library (Intel MKL). http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm

  88. AMD core math library (ACML). http://developer.amd.com/cpu/libraries/acml/Pages/default.aspx

  89. Elmroth E, Gustavson F, Jonsson I, Kågström B (2004) SIAM Rev 46:3

    Article  Google Scholar 

  90. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  91. Spartan’02 (2002) Molecular modeling package by Wavefunction, Inc.

    Google Scholar 

  92. Challacombe M (2000) Comp Phys Commun 128:93

    Article  CAS  Google Scholar 

  93. Bowler DR, Miyazaki T, Gillan MJ (2001) Comp Phys Commun 137:255

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Salek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rubensson, E.H., Rudberg, E., Salek, P. (2011). Methods for Hartree-Fock and Density Functional Theory Electronic Structure Calculations with Linearly Scaling Processor Time and Memory Usage. In: Zalesny, R., Papadopoulos, M., Mezey, P., Leszczynski, J. (eds) Linear-Scaling Techniques in Computational Chemistry and Physics. Challenges and Advances in Computational Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2853-2_12

Download citation

Publish with us

Policies and ethics