Skip to main content

Mechanosensitive Alterations of Action Potentials and Membrane Currents in Healthy and Diseased Cardiomyocytes: Cardiac Tissue and Isolated Cell

  • Chapter
  • First Online:
Mechanosensitivity of the Heart

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 3))

  • 801 Accesses

Abstract

Several electrophysiological alterations in the heart, which were ascribed to mechanoelectric feedback have been reported. First of all, they include changes in mechano-gated channels, mechanosensitive whole-cell currents which lead to membrane depolarization which is equivalent to a decrease in the resting membrane potential and elicited stretch-induced depolarizations, that appear during repolarization phase of cardiomyocyte action potential. Stretch-induced depolarization during action potentials provoke extra-action potentials when the stretch-induced depolarizations reach a threshold potential. Mechano-gated channels and mechanosensitive whole-cell currents are the cellular meachanisms underlying this phenomenon. In this review we discuss some open questions about mechanosensitive ionic currents in freshly isolated single cardiomyocytes. We will demonstrate certain methods of direct mechanical deformation of isolated cardiomyocytes for the purpose of electrophysiological investigation, including different experimental approaches to application of stretch and compression to pressure the cardiomyocytes. It is necessary to note that brick-like isolated cardiomyocytes stick to the bottom of the perfusion chamber in two different positions: edgewise, staying on the narrow side, or broad-wise. Partly these different positions of cells define the cell reaction to deformation. The reaction to stretch is identical in cardiomyocytes, occupying both positions (edgewise and broad-wise). However, the reaction to compression is different and is determined by the position of a cell. We demonstrate the possibility of simultaneous recording of mechano-gated single channels (in cell-attached mode) and mechanosensitive whole-cell currents during direct deformation of the whole cell. We discuss the results of stretch and compression of freshly isolated atrial cardiomyocytes from healthy and diseased animals and humans. Isolated cardiomyocytes respond to stretch with membrane depolarization, prolongation of their action potential (AP) and extra-APs that correlated with the amplitude of a non-selective stretch-activated current (ISAC). At negative potentials, ISAC is negative and carried by a transmembrane influx of Na+ ions. In this review we discuss some of the recent advances from intracellular recordings of the bioelectrical activity of cardiomyocytes during mechanical stretch of healthy and diseased tissues from animals and humans. The sensitivity of the AP to mechanical stretch was significantly increased in hypertrophied myocardium, and this could be related to the expression of SACs. We suppose that they are the basic findings that may explain mechanism of some arrhythmias and fibrillation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinlaja J, Sachs F (1998) The breakdown of cell membranes by electrical and mechanical stress. Biophys J 75: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Anversa P, Beghi C, Kikkawa Y, Olivetti G (1986) Myocardial infarction in rats: infarct size, myocyte hypertrophy, and capillary growth. Circ Res 58:26–37.

    CAS  PubMed  Google Scholar 

  • Anversa P, Beghi C, McDonald SL, Levicky V, Kikkawa Y, Olivetti G (1984) Morphometry of right ventricular hypertrophy induced by myocardial infarction in the rats. Am J Pathol 116:504–513.

    CAS  PubMed  Google Scholar 

  • Aronson RS, Ming Z (1993) Cellular mechanisms of arrhythmias in hypertrophied and failing myocardium. Circulation 83 (VII):76–83.

    Google Scholar 

  • Aronson RS, Nordin C (1984) Electrophysiologic properties of hypertrophied myo-cytes isolated from rats with renal hypertension. Eur Heart J 5 (F):339–345.

    PubMed  Google Scholar 

  • Belus A, White E (2003) Streptomycin and intracellular calcium modulate the response of single guinea-pig ventricular myocytes to axial stretch. J Physiol (London) 546:501–509.

    Article  CAS  Google Scholar 

  • Bett GCL, Sachs F (2000) Whole-cell mechanosensitive currents in rat ventricular myocytes activated by direct stimulation. J Membrane Biol 173:255–263.

    Article  CAS  Google Scholar 

  • Boluyt MO, Bing OHL, Lakatta EG (1995) The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Eur Heart J 16:19–30.

    CAS  PubMed  Google Scholar 

  • Bowman CL, Lohr JW (1996) Mechanotransducing ion channels in C6 glioma cells. Glia 18(3):161–176.

    Article  CAS  PubMed  Google Scholar 

  • Bowman CL, Ding JP, Sachs F, Sokabe M (1992) Mechanotransducing ion channels in astrocytes. Brain Res 584:272–286.

    Article  CAS  PubMed  Google Scholar 

  • Calaghan S, White E (2004) Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart. J Physiol (London) 559:205–214.

    Article  CAS  Google Scholar 

  • Chaudhuri O, Parekh SH, Fletcher DA (2007) Reversible stress softening of actin networks. Nature 445(7125):295–298.

    Article  CAS  PubMed  Google Scholar 

  • Crenshaw BS, Ward SR, Granger CB, Stebbins AL, Topol EJ, Califf RM (1997) Atrial fibrillation in the setting of acute myocardial infarction: the GUSTO-I experience. Global utilization of streptokinase and TPA for occluded coronary arteries. J Am Coll Cardiol 30:406–413.

    Article  CAS  PubMed  Google Scholar 

  • Davis MJ, Donovitz JA, Hood JD (1992) Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol 262:C1083–C1088.

    CAS  PubMed  Google Scholar 

  • Dudel J, Trautwein W (1954) Das Aktionspotential und Mechanogramm des Herzmuskels unter dem Einfluss der Dehnung. Cardiologie 25:344.

    Article  CAS  Google Scholar 

  • Dyachenko V, Christ A, Gubanov R, Isenberg G (2008) Bending of z-lines by mechanical stimuli: an input signal for integrin dependent modulation of ion channels? Prog Biophys Mol Biol 97(2–3):196–216.

    Article  CAS  PubMed  Google Scholar 

  • Dyachenko V, Husse B, Rueckschloss U, Isenberg G (2009a) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium Jan; 45(1):38–54.

    Article  CAS  PubMed  Google Scholar 

  • Dyachenko V, Rueckschloss U, Isenberg G (2006) Aging aggravates heterogeneities in cell-size and stress-intolerance of cardiac ventricular myocytes. Exp Gerontol 41(5):489–496.

    Article  CAS  PubMed  Google Scholar 

  • Dyachenko V, Rueckschloss U, Isenberg G (2009b) Modulation of cardiac mechanosensitive ion channels involves superoxide, nitric oxide and peroxynitrite. Cell Calcium Jan; 45(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  • Franz MR (1996) Mechano-electrical feedback in ventricular myocardium. Cardiovasc Res 32:15–24.

    CAS  PubMed  Google Scholar 

  • Franz MR (2000) Mechano-electrical feedback. Cardiovasc Res 45:263–266.

    Article  CAS  PubMed  Google Scholar 

  • Guski H, Meyer R, Fernandez-Britto JE (1991) Morphometric, histochemical and autoradiographic studies on myocardial cells in experimental cardiac hypertrophy and ischemia. Exp Pathol 41:79–97.

    CAS  PubMed  Google Scholar 

  • Gustin MC, Zhou XL, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765.

    Article  CAS  PubMed  Google Scholar 

  • Hamill OP, Lane JW, McBride DW Jr. (1992) Amiloride: A molecular probe for mechanosensitive channels. Trends Pharmacol Sci 13:373–376.

    Article  CAS  PubMed  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740.

    CAS  PubMed  Google Scholar 

  • Hart G (1994) Cellular electrophysiology in cardiac hypertrophy and failure. Cardiovasc Res 28:933–946.

    Article  CAS  PubMed  Google Scholar 

  • Hart G, Bryant SM, Shipsey SJ (1997) Regional differences in electrical and mechanical properties of myocytes from guinea-pig hearts with mild left ventricular hypertrophy. Cardiovasc Res 35(2):315–323.

    Article  PubMed  Google Scholar 

  • Hongo K, Pascarel C, Cazorla O, Gannier F, LeGuennec JY, White E (1997) Gadolinium blocks the delayed rectifier potassium current in isolated guinea-pig ventricular myocytes. Exp Physiol 82:647–656.

    CAS  PubMed  Google Scholar 

  • Honoré E, Patel AJ, Chemin J, Suchyna T, Sachs F (2006) Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci USA 103(18):6859–6864.

    Article  PubMed  Google Scholar 

  • Hu H, Sachs F (1994) Effects of mechanical stimulation on embryonic chick heart cells. Biophys J 66:A170.

    Google Scholar 

  • Hu H, Sachs F (1995) Whole cell mechanosensitive currents in acutely isolated chick heart cells: correlation with mechanosensitive channels. Biophys J 68:A393.

    Google Scholar 

  • Hu H, Sachs F (1996) Mechanically activated currents in chick heart cells. J Membr Biol 154:205–216.

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Sachs F (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29:1511–1523.

    Article  CAS  PubMed  Google Scholar 

  • Isenberg G (1976) Cardiac Purkinje fibres. Cesium as a tool to block inward rectifying potassium currents. Pflügers Arch – Eur J Physiol 365:99–106.

    Article  CAS  Google Scholar 

  • Isenberg G, Kazanski V, Dyachenko V (2004) How does shear stress modulate ion conductances of ventricular myocytes? J Mol Cell Cardiol 36:738.

    Google Scholar 

  • Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, Kamkin A (2003) Differential effects of stretch and compression on membrane currents and [Na+]C in ventricular myocytes. Progr Biophys Mol Biol 82:43–56 (Review).

    Article  CAS  Google Scholar 

  • Isenberg G, Kondratev D, Dyachenko V, Kazanski V, Gallitelli MF (2005) Isolated cardiomyocytes: Mechanosensitivity of action potential, membrane current and ion concentration. In: Kamkin A and Kiseleva I (eds.) Mechanosensitivity in Cells and Tissues. Academia Publishing House Ltd., Moscow, pp. 126–164  (Review).

    Google Scholar 

  • Kamkin A, Kiseleva I (2008b) Physiology and Molecular Biology of Cell Membranes. Monograph. Academia Publishing House Ltd., Moscow, 586 pp. (Russian)

    Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G (2000a) Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc Res 48:409–420.

    Article  CAS  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I, Isenberg G (2003c) Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes. Pflügers Arch – Europ J Physiol 446(2):220–231.

    CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Lozinsky I (2008a) Experimental methods of studying mechanosensitive channels and possible errors in data interpretation. In: Kamkin A and Kiseleva I (eds.) Mechanosensitivity in Cells and Tissues 1. Mechanosensitive Ion Channels. Springer, pp. 3–35 (Review).

    Google Scholar 

  • Kamkin A, Kiseleva I, Lozinsky I (2009) The role of mechanosensitive fibroblasts in the heart: Evidence from acutely isolated single cells, cultured cells and from intracellular microelectrode recordings on multicellular preparations from healthy and diseased cardiac tissue. In: Kamkin A and Kiseleva I (eds) Mechanosensitivity in cells and Tissues 3. Mechanosensitivity of the Heart. Springer, pp. 239–266 (Review).

    Google Scholar 

  • Kamkin A, Kiseleva I, Lozinsky I, Scholz H (2005a) Electrical interaction of mechanosensitive fibroblasts and myocytes in the heart. Basic Res Cardiol 100(4):337–345.

    Article  CAS  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Lammerich A, Bohm J, Persson PB, Gunther J (1999) Mechanically induced potentials in fibroblasts from human right atrium. Exp Physiol 84:347–356.

    Article  CAS  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Bohm J, Theres H, Günther J, Scholz H (2003d) Characterization of stretch-activated ion currents in isolated atrial myocytes from human hearts. Pflügers Arch – Europ J Physiol 446(3):339–346.

    CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Leiterer KP, Theres H, Scholz H, Günther J, Lab MJ (2000b) Mechanoelectric feedback in right atrium after left ventricular infarction in rats. J Mol Cell Cardiol 32:465–477.

    Article  CAS  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Theres H, Leiterer KP, Gunther J, Lab MJ (1998) Mechanoelectric feedback in right atrium after ventricular infarction in rats. Pflügers Arch – Europ J Physiol 435(6):O20–4/R79.

    Google Scholar 

  • Kamkin А, Kiseleva I, Isenberg G (2003a) Activation and inactivation of a non-selective cation conductance by local mechanical deformation of acutely isolated cardiac fibroblasts. Cardiovasc Res 57:793–803.

    Article  CAS  PubMed  Google Scholar 

  • Kamkin А, Kiseleva I, Isenberg G, Wagner KD, Günther J, Theres H, Scholz H (2003b) Cardiac fbroblasts and the mechano-electric feedback mechanism in healthy and diseased hearts. Prog Biophys Mol Biol 82:111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kamkin А, Kiseleva I, Lozinsky I, Wagner KD, Isenberg G, Scholz H (2005c) The role of mechanosensitive fibroblasts in the heart. In: Kamkin A and Kiseleva I (ed.) Mechanosensitivity in Cells and Tissues. Academia Publishing House Ltd., pp. 203–229 (Review).

    Google Scholar 

  • Kamkin А, Kiseleva I, Wagner KD, Scholz H (2005b) Mechano-electric feedback in the heart: Evidence from intracellular microelectrode recordings on multicellular preparations and single cells from healthy and diseased tissue. In: Kamkin A and Kiseleva I (eds.) Mechanosensitivity in Cells and Tissues. Academia Publishing House Ltd., pp. 165–202 (Review).

    Google Scholar 

  • Kawahara К (1993) Stretch-activated channels in renal tubule. Nippon Rinsho 51:2201–2208.

    CAS  PubMed  Google Scholar 

  • Kiseleva I, Kamkin A, Pylaev A, Kondratjev D, Leiterer KP, Theres H, Wagner KD, Persson PB, Günther J (1998) Electrophysiological properties of mechanosensitive atrial fibroblasts from chronic infarcted rat hearts. J Mol Cell Cardiol 30:1083–1093.

    Article  CAS  PubMed  Google Scholar 

  • Kiseleva I, Kamkin A, Wagner KD, Theres H, Leiterer KP, Gunther J (1998) Stretch-induced alterations in action potential configuration of ventricular myocytes in the chronic phase following myocardial infarction. Pflügers Arch – Europ J Physiol 435(6):P43–10, R205.

    Google Scholar 

  • Kiseleva I, Kamkin A, Wagner KD, Theres H, Ladhoff A, Scholz H, Günther J, Lab MJ (2000) Mechano-electric feedback after left ventricular infarction in rats. Cardiovasc Res 45:370–378.

    Article  CAS  PubMed  Google Scholar 

  • Kondratev D, Christ A, Gallitelli MF (2005) Inhibition of the Na+-H+ exchanger with cariporide abolishes stret-induced calcium but not sodium accumulation in mouse ventricular myocytes. Cell Calcium 37:69–80.

    Article  CAS  PubMed  Google Scholar 

  • Kondratev D, Gallitelli MF (2003) Increments in the concentration of sodium and calcium in cell compartments of stretched mouse ventricular myocytes. Cell Calcium 34:193–203.

    Article  CAS  PubMed  Google Scholar 

  • Lab MJ (1968) Is there mechanoelectric transduction in cardiac muscle? The mono-phasic action potential of the frog ventricle during isometric and isotonic contraction with calcium deficient perfusions. S Afr J Med Sci 33:60 (Abstract).

    Google Scholar 

  • Lab MJ (1996) Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovasc Res 32:3–14.

    CAS  PubMed  Google Scholar 

  • Lab MJ (1998) Mechanosensitivity as an integrative system in heart: an audit. Prog Biophys Mol Biol 71:7–27.

    Article  Google Scholar 

  • Lacampagne A, Gannier F, Argibay J, Garnier D, Le Guennec JC (1994) The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta 1191:205–208.

    Article  CAS  PubMed  Google Scholar 

  • Le Guennec J-Y, White E, Gannier F, Argibay JA, Garnier D (1991) Stretch-induced increase of resting intracellular calcium concentration in single guinea-pig ventricular myocytes. Exp Physiol 76:975–978.

    PubMed  Google Scholar 

  • Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103(50):18992–18997.

    Article  CAS  PubMed  Google Scholar 

  • Marchenko SM, Sage SO (1996) Mechanosensitive ion channels from endothelium of excised rat aorta. Biophys J 70:A365.

    Google Scholar 

  • Mizuno D, Tardin C, Schmidt CF, Mackintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315(5810):370–373.

    Article  CAS  PubMed  Google Scholar 

  • Morris CE (1990) Mechanosensitive ion channels. J Membr Biol 113:93–107.

    Article  CAS  PubMed  Google Scholar 

  • Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179(2):79–102.

    CAS  PubMed  Google Scholar 

  • Nazir SA, Lab MJ (1996) Mechanoelectric feedback and atrial arrhythmias. Cardiovasc Res 32:52–61.

    CAS  PubMed  Google Scholar 

  • Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260:H1406–H1414.

    CAS  PubMed  Google Scholar 

  • Pye PM, Cobbe SM (1992) Mechanisms of ventricular arrhythmias in cardiac failure and hypertrophy. Cardiovasc Res 26:740–750.

    Article  CAS  PubMed  Google Scholar 

  • Qin D, Zhang ZH, Caref EB, Boutjdir M, Jain P, El-Sherif N (1996) Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium. Circ Res 79:461–473.

    CAS  PubMed  Google Scholar 

  • Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1–77 (Review).

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, Mitsuiye T, Noma A (1992) Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart. Jpn J Physiol 42:957–970.

    Article  CAS  PubMed  Google Scholar 

  • Sokabe M, Sachs F (1990) The structure and dynamics of patch clamped membrane, a study using differential interference contrast microscopy. J Cell Biol 111, 599–606.

    Article  CAS  PubMed  Google Scholar 

  • Sokabe M, Sachs F, Jing Z (1991) Quantitative video microscopy of patch clamped membranes, stress, strain, capacitance and stretch channel activation. Biophys J 59, 722–728.

    Article  CAS  PubMed  Google Scholar 

  • Suchyna TM, Sachs F (2007) Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes. J Physiol (London) 581(1):369–387.

    Article  CAS  Google Scholar 

  • Taggart P, Sutton P, Lab M, Runnalls M, O'Brien W, Treasure T (1992) Effect of abrupt changes in ventricular loading on repolarization induced by transient aortic occlusion in humans. Am J Physiol 263(3 Pt 2):H816–H823.

    CAS  PubMed  Google Scholar 

  • Tennant R, Wiggers CJ (1935) The effect of coronary occlusion on myocardial contraction. Am J Physiol 112:351–361.

    Google Scholar 

  • Ward H, White E (1994) Reduction in the contraction and intracellular calcium transient of single rat ventricular myocytes by gadolinium and the attenuation of these effects by extracellular NaH2PO4. Exp Physiol 79:107–110.

    CAS  PubMed  Google Scholar 

  • Watson PA, Hannan R, Carl LL, Giger KE (1996) Contractile activity and passive stretch regulate tubulin mRNA and protein content in cardiac myocytes. Am J Physiol – Cell Physiol 271:C684–C689.

    CAS  Google Scholar 

  • Weitbrecht M, Schaper J, Zanker K, Blumel G, Mathes P (1983) Morphology and mitochondrial function of the surviving myocardium following myocardial infarction in the cat. Basic Res Cardiol 78:423–434.

    Article  CAS  PubMed  Google Scholar 

  • Wellner MC, Isenberg G (1993) Properties of stretch activated channels in myocytes from the guinea-pig urinary bladder. J Physiol (London) 466:412–425.

    Google Scholar 

  • Wellner MC, Isenberg G (1994) Stretch effects on whole-cell currents of guinea-pig urinary bladder myocytes. J Physiol (London) 480(3):439–448.

    CAS  Google Scholar 

  • Wellner MC, Isenberg G (1995) cAMP accelerates the decay of stretch-activated inward currents in guinea-pig urinary bladder myocytes. J Physiol (London) 482:141–156.

    CAS  Google Scholar 

  • White E, Boyett MR, Orchard CH (1995) The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. J Physiol (London) 482:93–107.

    CAS  Google Scholar 

  • White E, Le Guennec IY, Nigretto JM, Gannier F, Argibay JA, Gamier D (1993) The effects of increasing cell length on auxotonic contractions: membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp Physiol 78:65–78.

    CAS  PubMed  Google Scholar 

  • Xian Tao Li, Dyachenko V, Zuzarte M, Putzke C, Preisig-Müller R, Isenberg G, Daut J (2006) The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc Res 69(1):86–97.

    Article  CAS  PubMed  Google Scholar 

  • Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071.

    Article  CAS  PubMed  Google Scholar 

  • Youm JB, Han J, Kim N, Zhang YH, Kim E, Leem CH, Kim SJ, Earm YE (2005) Role of stretch-activated channels in the heart: Action potential and Ca2+ transients. In: Kamkin A and Kiseleva I (eds.) Mechanosensitivity in Cells and Tissues. Academia Publishing House Ltd., pp. 103–125 (Review).

    Google Scholar 

  • Zabel M, Koller BS, Sachs F, Franz MR (1996) Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc Res 32:120–130.

    CAS  PubMed  Google Scholar 

  • Zeng T, Bett GCL, Sachs F (2000) Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol 278:H548–H557.

    CAS  Google Scholar 

  • Zhang YH, Youm JB, Sung HK, Lee SH, Ryu SY, Lee S-H, Ho W-K, Earm YE (2000) Stretch-activated and background non-selective cation channels in rat atrial myocytes. J Physiol (London) 523:607–619.

    Article  CAS  Google Scholar 

  • Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L type calcium channels. Nature 399:159–162.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Kamkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lozinsky, I., Kamkin, A. (2010). Mechanosensitive Alterations of Action Potentials and Membrane Currents in Healthy and Diseased Cardiomyocytes: Cardiac Tissue and Isolated Cell. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2850-1_8

Download citation

Publish with us

Policies and ethics