Skip to main content

Mechanical Stress Induces Cardiomyocyte Hypertrophy Through Agonist-Independent Activation of Angiotensin II Type 1 Receptor

  • Chapter
  • First Online:
Mechanosensitivity of the Heart

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 3))

Abstract

The angiotensin II (AngII) type 1 (AT1) receptor is a seven-transmembrane G protein-coupled receptor that plays a crucial role in the development of load-induced cardiac hypertrophy. Besides systemically and locally generated AngII, mechanical stress can activate the AT1 receptor, and induce cardiac hypertrophy in vivo. In response to stretch stimulation, the AT1 receptor undergoes a specific switch in the receptor conformation without the involvement of AngII. The agonist-independent activation of the AT1 receptor can be inhibited by inverse agonists, but not by neutral antagonists, through the specific drug-receptor interactions. It is conceptually novel that the AT1 receptor, a member of G protein-coupled receptor, is a mechanical force-transducing molecule and mediates mechanical stress-induced cellular responses. In addition, inverse agonist activity emerges as an important pharmacological parameter for the AT1 receptor blockers that determines the efficacy to prevent organ damage in cardiovascular diseases. In this section, molecular and structural bases for mechanosensation by the AT1 receptor and inverse agonism at the AT1 receptor will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bendig G, Grimmler M, Huttner IG, Wessels G, Dahme T, Just S, Trano N, Katus HA, Fishman MC, Rottbauer W (2006) Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev 20: 2361–2372.

    Article  CAS  PubMed  Google Scholar 

  • Bond RA, Ijzerman AP (2006) Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci 27: 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Boucard AA, Roy M, Beaulieu ME, Lavigne P, Escher E, Guillemette G, Leduc R (2003) Constitutive activation of the angiotensin II type 1 receptor alters the spatial proximity of transmembrane 7 to the ligand-binding pocket. J Biol Chem 278: 36628–36636.

    Article  CAS  PubMed  Google Scholar 

  • Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo G (2003) Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9: 68–75.

    Article  CAS  PubMed  Google Scholar 

  • Bueno OF, Molkentin JD (2002) Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 91: 776–781.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Lin F, Xu M, Graham RM (2002) Phe(303) in TMVI of the alpha(1B)-adrenergic receptor is a key residue coupling TM helical movements to G-protein activation. Biochemistry 41: 588–596.

    Article  CAS  PubMed  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  • Cooper Gt, Kent RL, Uboh CE, Thompson EW, Marino TA (1985) Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J Clin Invest 75: 1403–1414.

    Article  CAS  PubMed  Google Scholar 

  • de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52: 415–472.

    PubMed  Google Scholar 

  • Dostal DE, Baker KM (1992) Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am J Hypertens 5: 276–280.

    CAS  PubMed  Google Scholar 

  • Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21: 90–113.

    Article  CAS  PubMed  Google Scholar 

  • Gether U, Kobilka BK (1998) G protein-coupled receptors. II. Mechanism of agonist activation. J Biol Chem 273: 17979–17982.

    Article  CAS  PubMed  Google Scholar 

  • Hein L, Stevens ME, Barsh GS, Pratt RE, Kobilka BK, Dzau VJ (1997) Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc Natl Acad Sci USA 94: 6391–6396.

    Article  CAS  PubMed  Google Scholar 

  • Hunyady L, Catt KJ (2006) Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol 20: 953–970.

    Article  CAS  PubMed  Google Scholar 

  • Hunyady L, Turu G (2004) The role of the AT1 angiotensin receptor in cardiac hypertrophy: angiotensin II receptor or stretch sensor? Trends Endocrinol Metab 15: 405–408.

    CAS  PubMed  Google Scholar 

  • Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348: 2007–2018.

    Article  PubMed  Google Scholar 

  • Jongejan A, Bruysters M, Ballesteros JA, Haaksma E, Bakker RA, Pardo L, Leurs R (2005) Linking agonist binding to histamine H1 receptor activation. Nat Chem Biol 1: 98–103.

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52: 11–34.

    CAS  PubMed  Google Scholar 

  • Kira Y, Kochel PJ, Gordon EE, Morgan HE (1984) Aortic perfusion pressure as a determinant of cardiac protein synthesis. Am J Physiol 246: C247–C258.

    CAS  PubMed  Google Scholar 

  • Kjeldsen SE, Dahlof B, Devereux RB, Julius S, Aurup P, Edelman J, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristianson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Snapinn S, Wedel H (2002) Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE) substudy. JAMA 288: 1491–1498.

    Article  CAS  PubMed  Google Scholar 

  • Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE (2003) A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med 115: 41–46.

    Article  PubMed  Google Scholar 

  • Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111: 943–955.

    Article  CAS  PubMed  Google Scholar 

  • Komuro I, Yazaki Y (1993) Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 55: 55–75.

    Article  CAS  PubMed  Google Scholar 

  • Kudoh S, Komuro I, Mizuno T, Yamazaki T, Zou Y, Shiojima I, Takekoshi N, Yazaki Y (1997) Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 80: 139–146.

    CAS  PubMed  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436: 647–654.

    Article  CAS  PubMed  Google Scholar 

  • Le MT, Vanderheyden PM, Szaszak M, Hunyady L, Kersemans V, Vauquelin G (2003) Peptide and nonpeptide antagonist interaction with constitutively active human AT1 receptors. Biochem Pharmacol 65: 1329–1338.

    Article  CAS  PubMed  Google Scholar 

  • Lemaire K, Van de Velde S, Van Dijck P, Thevelein JM (2004) Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell 16: 293–299.

    Article  CAS  PubMed  Google Scholar 

  • Lorell BH, Carabello BA (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102: 470–479.

    CAS  PubMed  Google Scholar 

  • Mann DL, Kent RL, Cooper Gt (1989) Load regulation of the properties of adult feline cardiocytes: growth induction by cellular deformation. Circ Res 64: 1079–1090.

    CAS  PubMed  Google Scholar 

  • Martin SS, Holleran BJ, Escher E, Guillemette G, Leduc R (2007) Activation of the angiotensin II type 1 receptor leads to movement of the sixth transmembrane domain: analysis by the substituted cysteine accessibility method. Mol Pharmacol 72: 182–190.

    Article  CAS  PubMed  Google Scholar 

  • Milligan G (2003) Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol Pharmacol 64: 1271–1276.

    Article  CAS  PubMed  Google Scholar 

  • Miura S, Karnik SS (2002) Constitutive activation of angiotensin II type 1 receptor alters the orientation of transmembrane Helix-2. J Biol Chem 277: 24299–24305.

    Article  CAS  PubMed  Google Scholar 

  • Miura S, Saku K, Karnik SS (2003a) Molecular analysis of the structure and function of the angiotensin II type 1 receptor. Hypertens Res 26: 937–943.

    Article  CAS  PubMed  Google Scholar 

  • Miura S, Zhang J, Boros J, Karnik SS (2003b) TM2-TM7 interaction in coupling movement of transmembrane helices to activation of the angiotensin II type-1 receptor. J Biol Chem 278: 3720–3725.

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Tanabe S, Maruyama Y, Mangmool S, Urayama K, Nagamatsu Y, Takagahara S, Turner JH, Kozasa T, Kobayashi H, Sato Y, Kawanishi T, Inoue R, Nagao T, Kurose H (2005) G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem 280: 18434–18441.

    Article  CAS  PubMed  Google Scholar 

  • Noda K, Saad Y, Kinoshita A, Boyle TP, Graham RM, Husain A, Karnik SS (1995) Tetrazole and carboxylate groups of angiotensin receptor antagonists bind to the same subsite by different mechanisms. J Biol Chem 270: 2284–2289.

    Article  CAS  PubMed  Google Scholar 

  • Noda M, Shibouta Y, Inada Y, Ojima M, Wada T, Sanada T, Kubo K, Kohara Y, Naka T, Nishikawa K (1993) Inhibition of rabbit aortic angiotensin II (AII) receptor by CV-11974, a new nonpeptide AII antagonist. Biochem Pharmacol 46: 311–318.

    Article  CAS  PubMed  Google Scholar 

  • Oparil S (2000) Newly emerging pharmacologic differences in angiotensin II receptor blockers. Am J Hypertens 13: 18S–24S.

    Article  CAS  PubMed  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289: 739–745.

    Article  CAS  PubMed  Google Scholar 

  • Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M (2000) Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci USA 97: 931–936.

    Article  CAS  PubMed  Google Scholar 

  • Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86: 747–803.

    Article  CAS  PubMed  Google Scholar 

  • Perez DM, Karnik SS (2005) Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev 57: 147–161.

    Article  CAS  PubMed  Google Scholar 

  • Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942–948.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450: 383–387.

    Article  CAS  PubMed  Google Scholar 

  • Re RN (2004) Mechanisms of disease: local renin-angiotensin-aldosterone systems and the pathogenesis and treatment of cardiovascular disease. Nat Clin Pract Cardiovasc Med 1: 42–47.

    CAS  PubMed  Google Scholar 

  • Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318: 1266–1273.

    Article  CAS  PubMed  Google Scholar 

  • Sadoshima J, Izumo S (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59: 551–571.

    Article  CAS  PubMed  Google Scholar 

  • Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75: 977–984.

    Article  CAS  PubMed  Google Scholar 

  • Siri FM, McNamara JJ (1987) Effects of sympathectomy on heart size and function in aortic-constricted rats. Am J Physiol 252: H442–H447.

    CAS  PubMed  Google Scholar 

  • Strange PG (2002) Mechanisms of inverse agonism at G-protein-coupled receptors. Trends Pharmacol Sci 23: 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Takezako T, Gogonea C, Saad Y, Noda K, Karnik SS (2004) “Network leaning” as a mechanism of insurmountable antagonism of the angiotensin II type 1 receptor by non-peptide antagonists. J Biol Chem 279: 15248–15257.

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K, Fukamizu A, Murakami K (1994) Angiotensinogen-deficient mice with hypotension. J Biol Chem 269: 31334–31337.

    CAS  PubMed  Google Scholar 

  • Vilardaga JP, Steinmeyer R, Harms GS, Lohse MJ (2005) Molecular basis of inverse agonism in a G protein-coupled receptor. Nat Chem Biol 1: 25–28.

    Article  CAS  PubMed  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454: 486–491.

    Google Scholar 

  • White DE, Coutu P, Shi YF, Tardif JC, Nattel S, St Arnaud R, Dedhar S, Muller WJ (2006) Targeted ablation of ILK from the murine heart results in dilated cardiomyopathy and spontaneous heart failure. Genes Dev 20: 2355–2360.

    Article  CAS  PubMed  Google Scholar 

  • Yamano Y, Ohyama K, Chaki S, Guo DF, Inagami T (1992) Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. Biochem Biophys Res Commun 187: 1426–1431.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, Yazaki Y (1996) Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 271: 3221–3228.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K (1995) Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res 77: 258–265.

    CAS  PubMed  Google Scholar 

  • Yasuda N, Miura S, Akazawa H, Tanaka T, Qin Y, Kiya Y, Imaizumi S, Fujino M, Ito K, Zou Y, Fukuhara S, Kunimoto S, Fukuzaki K, Sato T, Ge J, Mochizuki N, Nakaya H, Saku K, Komuro I (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9: 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Zaman MA, Oparil S, Calhoun DA (2002) Drugs targeting the renin-angiotensin-aldosterone system. Nat Rev Drug Discov 1: 621–636.

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6: 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Komuro I, Yamazaki T, Aikawa R, Kudoh S, Shiojima I, Hiroi Y, Mizuno T, Yazaki Y (1996) Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J Biol Chem 271: 33592–33597.

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Komuro I, Yamazaki T, Kudoh S, Uozumi H, Kadowaki T, Yazaki Y (1999) Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J Biol Chem 274: 9760–9770.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported in part by grants from the Japanese Ministry of Education, Science, Sports, and Culture, from Health and Labor Sciences Research Grants, Japan Health Sciences Foundation (to IK and HA); Takeda Medical Research Foundation, Takeda Science Foundation, Uehara Memorial Foundation, Kato Memorial Trust for Nambyo Research, Japan Medical Association (to IK); from Mochida Memorial Foundation, Japanese Heart Foundation/Novartis Research Award on Molecular and Cellular Cardiology, Japan Intractable Diseases Research Foundation, Kowa Life Science Foundation (to HA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Komuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Akazawa, H., Komuro, I. (2010). Mechanical Stress Induces Cardiomyocyte Hypertrophy Through Agonist-Independent Activation of Angiotensin II Type 1 Receptor. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2850-1_4

Download citation

Publish with us

Policies and ethics