Skip to main content

Molecular Signaling Mechanisms of Myocardial Stretch: Implications for Heart Disease

  • Chapter
  • First Online:
  • 839 Accesses

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 3))

Abstract

With every heartbeat, myocardial cells are subjected to substantial mechanical stretch. Stretch is a potent stimulus for growth, differentiation, migration, remodeling and gene expression. Mechanical load is a major cause of cardiac hypertrophy. Since the initial observation of stretch-induced growth, our understanding of this complex field has been steadily growing, but remains incomplete. The mechanisms by which myocardial cells convert mechanical stimuli into biochemical signals that result in physiologic and pathological changes remain to be completely understood. Integrins, caveolae and focal adhesions have been shown to have important mechanosensing roles in cardiac myocytes. Downstream effectors activated by mechanosensors include guanine-nucleotide binding proteins (G-proteins), mitogen-activated protein (MAP) kinases, Janus-associated kinase/signal transducers and activators of transcription (JAK/Stat), protein kinase C (PKC) and protein kinase B/Akt pathways. Multiple levels of crosstalk exist between these pathways. Early studies have implicated most of these pathways in cardiac injury and growth response, however, more recent advancements in the development of kinase-specific inhibitors and genetically-engineered animal models have revealed significant new insights. Recent studies suggest that acute mechanical stretch activates protective pathways including c-jun N-terminal kinase (JNK) and Akt as a tolerance response, rather than injury-related signaling cascades such as p38 MAP kinase. However, chronic stretch/mechanical load creates an imbalance that favors the injury related pathway by an unknown mechanism in the myocardium. The following chapter provides an overview of the fundamental processes of stretch-activated mechano-signaling in myocardial cells, and recent advances in our understanding of this increasingly important field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamson P, Marshall CJ, Hall A, Tilbrook PA (1992) Post-translational modifications of p21rho proteins. J Biol Chem 267: 20033–20038.

    CAS  PubMed  Google Scholar 

  • Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, Akazawa H, Takano H, Nagai R, Komuro I (2002) Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension 39: 233–238.

    CAS  PubMed  Google Scholar 

  • Baicu CF, Stroud JD, Livesay VA, Hapke E, Holder J, Spinale FG, Zile MR (2003) Changes in extracellular collagen matrix alter myocardial systolic performance. Am J Physiol Heart Circ Physiol 284: H122–H132.

    CAS  PubMed  Google Scholar 

  • Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes CP, Alessi DR (1999) PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 9: 393–404.

    CAS  PubMed  Google Scholar 

  • Belkin AM, Retta SF, Pletjushkina OY, Balzac F, Silengo L, Fassler R, Koteliansky VE, Burridge K, Tarone G (1997) Muscle beta1D integrin reinforces the cytoskeleton-matrix link: modulation of integrin adhesive function by alternative splicing. J Cell Biol 139: 1583–1595.

    CAS  PubMed  Google Scholar 

  • Bendig G, Grimmler M, Huttner IG, Wessels G, Dahme T, Just S, Trano N, Katus HA, Fishman MC, Rottbauer W (2006) Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev 20: 2361–2372.

    CAS  PubMed  Google Scholar 

  • Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19: 677–695.

    CAS  PubMed  Google Scholar 

  • Bishop JE, Laurent GJ (1995) Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J 16 Suppl C: 38–44.

    CAS  PubMed  Google Scholar 

  • Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D (2004) Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432: 466–472.

    CAS  PubMed  Google Scholar 

  • Brancaccio M, Cabodi S, Belkin AM, Collo G, Koteliansky VE, Tomatis D, Altruda F, Silengo L, Tarone G (1998) Differential onset of expression of alpha 7 and beta 1D integrins during mouse heart and skeletal muscle development. Cell Adhes Commun 5: 193–205.

    CAS  PubMed  Google Scholar 

  • Braz JC, Bueno OF, Liang Q, Wilkins BJ, Dai YS, Parsons S, Braunwart J, Glascock BJ, Klevitsky R, Kimball TF, Hewett TE, Molkentin JD (2003) Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NFAT signaling. J Clin Invest 111: 1475–1486.

    CAS  PubMed  Google Scholar 

  • Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, Kimball TF, Lorenz JN, Nairn AC, Liggett SB, Bodi I, Wang S, Schwartz A, Lakatta EG, DePaoli-Roach AA, Robbins J, Hewett TE, Bibb JA, Westfall MV, Kranias EG, Molkentin JD (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 10: 248–254.

    CAS  PubMed  Google Scholar 

  • Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45: 657–687.

    CAS  PubMed  Google Scholar 

  • Bueno OF, De Windt LJ, Lim HW, Tymitz KM, Witt SA, Kimball TR, Molkentin JD (2001) The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res 88: 88–96.

    CAS  PubMed  Google Scholar 

  • Bueno OF, Molkentin JD (2002) Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 91: 776–781.

    CAS  PubMed  Google Scholar 

  • Bullard TA, Hastings JL, Davis JM, Borg TK, Price RL (2007) Altered PKC expression and phosphorylation in response to the nature, direction, and magnitude of mechanical stretch. Can J Physiol Pharmacol 85: 243–250.

    CAS  PubMed  Google Scholar 

  • Burgess ML, Carver WE, Terracio L, Wilson SP, Wilson MA, Borg TK (1994) Integrin-mediated collagen gel contraction by cardiac fibroblasts. Effects of angiotensin II. Circ Res 74: 291–298.

    CAS  PubMed  Google Scholar 

  • Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29: 356–370.

    CAS  PubMed  Google Scholar 

  • Clemente CF, Tornatore TF, Theizen TH, Deckmann AC, Pereira TC, Lopes-Cendes I, Souza JR, Franchini KG (2007) Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice. Circ Res 101: 1339–1348.

    CAS  PubMed  Google Scholar 

  • Clerk A, Michael A, Sugden PH (1998) Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? J Cell Biol 142: 523–535.

    CAS  PubMed  Google Scholar 

  • de Jonge HW, Dekkers DH, Houtsmuller AB, Sharma HS, Lamers JM (2007) Differential signaling and hypertrophic responses in cyclically stretched vs endothelin-1 stimulated neonatal rat cardiomyocytes. Cell Biochem Biophys 47: 21–32.

    PubMed  Google Scholar 

  • DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ (2006) Akt1 is required for physiological cardiac growth. Circulation 113: 2097–2104.

    CAS  PubMed  Google Scholar 

  • Dedhar S, Williams B, Hannigan G (1999) Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling. Trends Cell Biol 9: 319–323.

    CAS  PubMed  Google Scholar 

  • Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 95: 11211–11216.

    CAS  PubMed  Google Scholar 

  • DiMichele LA, Doherty JT, Rojas M, Beggs HE, Reichardt LF, Mack CP, Taylor JM (2006) Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ Res 99: 636–645.

    CAS  PubMed  Google Scholar 

  • Domingos PP, Fonseca PM, Nadruz W, Jr., Franchini KG (2002) Load-induced focal adhesion kinase activation in the myocardium: role of stretch and contractile activity. Am J Physiol Heart Circ Physiol 282: H556–H564.

    CAS  PubMed  Google Scholar 

  • Dostal DE, Hunt RA, Kule CE, Bhat GJ, Karoor V, McWhinney CD, Baker KM (1997) Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac effects and signal transduction pathways. J Mol Cell Cardiol 29: 2893–2902.

    CAS  PubMed  Google Scholar 

  • Dowling JJ, Vreede AP, Kim S, Golden J, Feldman EL (2008) Kindlin-2 is required for myocyte elongation and is essential for myogenesis. BMC Cell Biol 9: 36.

    PubMed  Google Scholar 

  • Eble DM, Strait JB, Govindarajan G, Lou J, Byron KL, Samarel AM (2000) Endothelin-induced cardiac myocyte hypertrophy: role for focal adhesion kinase. Am J Physiol Heart Circ Physiol 278: H1695–H1707.

    CAS  PubMed  Google Scholar 

  • Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102: 279–297.

    CAS  PubMed  Google Scholar 

  • Fukata Y, Amano M, Kaibuchi K (2001) Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22: 32–39.

    CAS  PubMed  Google Scholar 

  • Fukuzawa J, Booz GW, Hunt RA, Shimizu N, Karoor V, Baker KM, Dostal DE (2000) Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3: an autocrine loop for hypertrophy. Hypertension 35: 1191–1196.

    CAS  PubMed  Google Scholar 

  • Furuta Y, Ilic D, Kanazawa S, Takeda N, Yamamoto T, Aizawa S (1995) Mesodermal defect in late phase of gastrulation by a targeted mutation of focal adhesion kinase, FAK. Oncogene 11: 1989–1995.

    CAS  PubMed  Google Scholar 

  • Glennon PE, Kaddoura S, Sale EM, Sale GJ, Fuller SJ, Sugden PH (1996) Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ Res 78: 954–961.

    CAS  PubMed  Google Scholar 

  • Goldsmith EC, Hoffman A, Morales MO, Potts JD, Price RL, McFadden A, Rice M, Borg TK (2004) Organization of fibroblasts in the heart. Dev Dyn 230: 787–794.

    CAS  PubMed  Google Scholar 

  • Grashoff C, Aszodi A, Sakai T, Hunziker EB, Fassler R (2003) Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep 4: 432–438.

    CAS  PubMed  Google Scholar 

  • Greenberg RS, Bernstein AM, Benezra M, Gelman IH, Taliana L, Masur SK (2006) FAK-dependent regulation of myofibroblast differentiation. Faseb J 20: 1006–1008.

    CAS  PubMed  Google Scholar 

  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, Davis RJ (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. Embo J 15: 2760–2770.

    CAS  PubMed  Google Scholar 

  • Hannigan GE, Coles JG, Dedhar S (2007) Integrin-linked kinase at the heart of cardiac contractility, repair, and disease. Circ Res 100: 1408–1414.

    CAS  PubMed  Google Scholar 

  • Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379: 91–96.

    CAS  PubMed  Google Scholar 

  • Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103: 670–677.

    CAS  PubMed  Google Scholar 

  • Hattori T, Shimokawa H, Higashi M, Hiroki J, Mukai Y, Tsutsui H, Kaibuchi K, Takeshita A (2004) Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation 109: 2234–2239.

    CAS  PubMed  Google Scholar 

  • Heidkamp MC, Bayer AL, Kalina JA, Eble DM, Samarel AM (2002) GFP-FRNK disrupts focal adhesions and induces anoikis in neonatal rat ventricular myocytes. Circ Res 90: 1282–1289.

    CAS  PubMed  Google Scholar 

  • Hein S, Schaper J (2001) The extracellular matrix in normal and diseased myocardium. J Nucl Cardiol 8: 188–196.

    CAS  PubMed  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7: 589–600.

    CAS  PubMed  Google Scholar 

  • Hill MM, Feng J, Hemmings BA (2002) Identification of a plasma membrane Raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDK1. Curr Biol 12: 1251–1255.

    CAS  PubMed  Google Scholar 

  • Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J, Jr., Muller W, Chien KR (1999) Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97: 189–198.

    CAS  PubMed  Google Scholar 

  • Hornberger TA, Chien S (2006) Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem 97: 1207–1216.

    CAS  PubMed  Google Scholar 

  • Hynes RO (2002a) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687.

    CAS  PubMed  Google Scholar 

  • Hynes RO (2002b) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8: 918–921.

    CAS  PubMed  Google Scholar 

  • Ilic D, Damsky CH, Yamamoto T (1997) Focal adhesion kinase: at the crossroads of signal transduction. J Cell Sci 110 (Pt 4): 401–407.

    CAS  PubMed  Google Scholar 

  • Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377: 539–544.

    CAS  PubMed  Google Scholar 

  • Inagaki K, Koyanagi T, Berry NC, Sun L, Mochly-Rosen D (2008) Pharmacological inhibition of epsilon-protein kinase C attenuates cardiac fibrosis and dysfunction in hypertension-induced heart failure. Hypertension 51: 1565–1569.

    CAS  PubMed  Google Scholar 

  • Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127: 125–137.

    CAS  PubMed  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6: 1122–1128.

    CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269.

    CAS  PubMed  Google Scholar 

  • Jane-Lise S, Corda S, Chassagne C, Rappaport L (2000) The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Fail Rev 5: 239–250.

    CAS  PubMed  Google Scholar 

  • Jia N, Okamoto H, Shimizu T, Chiba S, Matsui Y, Sugawara T, Akino M, Kitabatake A (2003) A newly developed angiotensin II type 1 receptor antagonist, CS866, promotes regression of cardiac hypertrophy by reducing integrin beta1 expression. Hypertens Res 26: 737–742.

    CAS  PubMed  Google Scholar 

  • Johnatty SE, Dyck JR, Michael LH, Olson EN, Abdellatif M (2000) Identification of genes regulated during mechanical load-induced cardiac hypertrophy. J Mol Cell Cardiol 32: 805–815.

    CAS  PubMed  Google Scholar 

  • Johnson GL, Nakamura K (2007) The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta 1773: 1341–1348.

    CAS  PubMed  Google Scholar 

  • Katsumata N, Shimokawa H, Seto M, Kozai T, Yamawaki T, Kuwata K, Egashira K, Ikegaki I, Asano T, Sasaki Y, Takeshita A (1997) Enhanced myosin light chain phosphorylations as a central mechanism for coronary artery spasm in a swine model with interleukin-1beta. Circulation 96: 4357–4363.

    CAS  PubMed  Google Scholar 

  • Kawakami Y, Nishimoto H, Kitaura J, Maeda-Yamamoto M, Kato RM, Littman DR, Leitges M, Rawlings DJ, Kawakami T (2004) Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem 279: 47720–47725.

    CAS  PubMed  Google Scholar 

  • Kawano H, Cody RJ, Graf K, Goetze S, Kawano Y, Schnee J, Law RE, Hsueh WA (2000) Angiotensin II enhances integrin and alpha-actinin expression in adult rat cardiac fibroblasts. Hypertension 35: 273–279.

    CAS  PubMed  Google Scholar 

  • Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G, Ellingsen O (2008) Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 214: 316–321.

    CAS  PubMed  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245–248.

    CAS  PubMed  Google Scholar 

  • Kudoh S, Komuro I, Hiroi Y, Zou Y, Harada K, Sugaya T, Takekoshi N, Murakami K, Kadowaki T, Yazaki Y (1998) Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J Biol Chem 273: 24037–24043.

    CAS  PubMed  Google Scholar 

  • Kumar AS, Naruszewicz I, Wang P, Leung-Hagesteijn C, Hannigan GE (2004) ILKAP regulates ILK signaling and inhibits anchorage-independent growth. Oncogene 23: 3454–3461.

    CAS  PubMed  Google Scholar 

  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156–160.

    CAS  PubMed  Google Scholar 

  • Lal H, Guleria RS, Foster DM, Lu G, Watson LE, Sanghi S, Smith M, Dostal DE (2007a) Integrins: novel therapeutic targets for cardiovascular diseases. Cardiovasc Hematol Agents Med Chem 5: 109–132.

    CAS  PubMed  Google Scholar 

  • Lal H, Verma SK, Smith M, Guleria RS, Lu G, Foster DM, Dostal DE (2007b) Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through beta1-integrin and focal adhesion kinase. J Mol Cell Cardiol 43: 137–147.

    CAS  PubMed  Google Scholar 

  • Laser M, Kasi VS, Hamawaki M, Cooper Gt, Kerr CM, Kuppuswamy D (1998) Differential activation of p70 and p85 S6 kinase isoforms during cardiac hypertrophy in the adult mammal. J Biol Chem 273: 24610–24619.

    CAS  PubMed  Google Scholar 

  • Lee JW, Juliano R (2004) Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Mol Cells 17: 188–202.

    CAS  PubMed  Google Scholar 

  • Leung-Hagesteijn C, Mahendra A, Naruszewicz I, Hannigan GE (2001) Modulation of integrin signal transduction by ILKAP, a protein phosphatase 2C associating with the integrin-linked kinase, ILK1. Embo J 20: 2160–2170.

    CAS  PubMed  Google Scholar 

  • Lezoualc’h F, Metrich M, Hmitou I, Duquesnes N, Morel E (2008) Small GTP-binding proteins and their regulators in cardiac hypertrophy. J Mol Cell Cardiol 44: 623–632.

    PubMed  Google Scholar 

  • Li F, Zhang Y, Wu C (1999) Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. J Cell Sci 112 (Pt 24): 4589–4599.

    CAS  PubMed  Google Scholar 

  • Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, Saffitz J, Chien K, Xiao RP, Kass DA, Wang Y (2001) The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci USA 98: 12283–12288.

    CAS  PubMed  Google Scholar 

  • Lin TH, Aplin AE, Shen Y, Chen Q, Schaller M, Romer L, Aukhil I, Juliano RL (1997) Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. J Cell Biol 136: 1385–1395.

    CAS  PubMed  Google Scholar 

  • Linehan KA, Seymour AM, Williams PE (2001) Semiquantitative analysis of collagen types in the hypertrophied left ventricle. J Anat 198: 83–92.

    CAS  PubMed  Google Scholar 

  • Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, Voisin L, Saba-El-Leil MK, Meloche S, Pouyssegur J, Pages G, De Windt LJ, Doevendans PA, Molkentin JD (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109: 1938–1941.

    CAS  PubMed  Google Scholar 

  • Liu S, Calderwood DA, Ginsberg MH (2000) Integrin cytoplasmic domain-binding proteins. J Cell Sci 113 (Pt 20): 3563–3571.

    CAS  PubMed  Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457–468.

    CAS  PubMed  Google Scholar 

  • Lopes MM, Ribeiro GC, Tornatore TF, Clemente CF, Teixeira VP, Franchini KG (2007) Increased expression and phosphorylation of focal adhesion kinase correlates with dysfunction in the volume-overloaded human heart. Clin Sci (Lond) 113: 195–204.

    CAS  Google Scholar 

  • Lu C, Shimaoka M, Salas A, Springer TA (2004) The binding sites for competitive antagonistic, allosteric antagonistic, and agonistic antibodies to the I domain of integrin LFA-1. J Immunol 173: 3972–3978.

    CAS  PubMed  Google Scholar 

  • Lu H, Fedak PW, Dai X, Du C, Zhou YQ, Henkelman M, Mongroo PS, Lau A, Yamabi H, Hinek A, Husain M, Hannigan G, Coles JG (2006) Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation 114: 2271–2279.

    CAS  PubMed  Google Scholar 

  • Lynch DK, Ellis CA, Edwards PA, Hiles ID (1999) Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene 18: 8024–8032.

    CAS  PubMed  Google Scholar 

  • Mackay K, Mochly-Rosen D (2001) Localization, anchoring, and functions of protein kinase C isozymes in the heart. J Mol Cell Cardiol 33: 1301–1307.

    CAS  PubMed  Google Scholar 

  • Madri JA, Dreyer B, Pitlick FA, Furthmayr H (1980) The collagenous components of the subendothelium. Correlation of structure and function. Lab Invest 43: 303–315.

    CAS  PubMed  Google Scholar 

  • Maillet M, Purcell NH, Sargent MA, York A, Bueno OF, Molkentin JD (2008) Dusp6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J Biol Chem 283: 31246–31255.

    Google Scholar 

  • Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91: 1103–1113.

    CAS  PubMed  Google Scholar 

  • Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A (2003) Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA 100: 11285–11290.

    CAS  PubMed  Google Scholar 

  • McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109: 3050–3055.

    CAS  PubMed  Google Scholar 

  • Mimura Y, Ihn H, Jinnin M, Asano Y, Yamane K, Tamaki K (2005) Constitutive phosphorylation of focal adhesion kinase is involved in the myofibroblast differentiation of scleroderma fibroblasts. J Invest Dermatol 124: 886–892.

    CAS  PubMed  Google Scholar 

  • Mould AP, Humphries MJ (2004) Regulation of integrin function through conformational complexity: not simply a knee-jerk reaction? Curr Opin Cell Biol 16: 544–551.

    CAS  PubMed  Google Scholar 

  • Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, Osugi T, Izumi M, Oshima Y, Nakaoka Y, Hirota H, Kishimoto T, Yamauchi-Takihara K (2001) Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104: 979–981.

    CAS  PubMed  Google Scholar 

  • Nemoto S, Sheng Z, Lin A (1998) Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol Cell Biol 18: 3518–3526.

    CAS  PubMed  Google Scholar 

  • Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ, Gerard RD, Kuro OM, Rothermel BA, Hill JA (2007) FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proc Natl Acad Sci USA 104: 20517–20522.

    CAS  PubMed  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53–62.

    CAS  PubMed  Google Scholar 

  • Owen JD, Ruest PJ, Fry DW, Hanks SK (1999) Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol Cell Biol 19: 4806–4818.

    CAS  PubMed  Google Scholar 

  • Pan J, Fukuda K, Kodama H, Sano M, Takahashi T, Makino S, Kato T, Manabe T, Hori S, Ogawa S (1998) Involvement of gp130-mediated signaling in pressure overload-induced activation of the JAK/STAT pathway in rodent heart. Heart Vessels 13: 199–208.

    CAS  PubMed  Google Scholar 

  • Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, Ogawa S (1999) Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84: 1127–1136.

    CAS  PubMed  Google Scholar 

  • Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM (2005) PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 202: 536–553.

    CAS  PubMed  Google Scholar 

  • Pasquet JM, Noury M, Nurden AT (2002) Evidence that the platelet integrin alphaIIb beta3 is regulated by the integrin-linked kinase, ILK, in a PI3-kinase dependent pathway. Thromb Haemost 88: 115–122.

    CAS  PubMed  Google Scholar 

  • Peng X, Kraus MS, Wei H, Shen TL, Pariaut R, Alcaraz A, Ji G, Cheng L, Yang Q, Kotlikoff MI, Chen J, Chien K, Gu H, Guan JL (2006) Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest 116: 217–227.

    CAS  PubMed  Google Scholar 

  • Persad S, Troussard AA, McPhee TR, Mulholland DJ, Dedhar S (2001) Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J Cell Biol 153: 1161–1174.

    CAS  PubMed  Google Scholar 

  • Pham CG, Harpf AE, Keller RS, Vu HT, Shai SY, Loftus JC, Ross RS (2000) Striated muscle-specific beta(1D)-integrin and FAK are involved in cardiac myocyte hypertrophic response pathway. Am J Physiol Heart Circ Physiol 279: H2916–H2926.

    CAS  PubMed  Google Scholar 

  • Price LS, Leng J, Schwartz MA, Bokoch GM (1998) Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell 9: 1863–1871.

    CAS  PubMed  Google Scholar 

  • Purcell NH, Wilkins BJ, York A, Saba-El-Leil MK, Meloche S, Robbins J, Molkentin JD (2007) Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci U S A 104: 14074–14079.

    CAS  PubMed  Google Scholar 

  • Ren J, Avery J, Zhao H, Schneider JG, Ross FP, Muslin AJ (2007) Beta3 integrin deficiency promotes cardiac hypertrophy and inflammation. J Mol Cell Cardiol 42: 367–377.

    CAS  PubMed  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399.

    CAS  PubMed  Google Scholar 

  • Ross RS (2002) The extracellular connections: the role of integrins in myocardial remodeling. J Card Fail 8: S326–331.

    Google Scholar 

  • Ross RS (2004) Molecular and mechanical synergy: cross-talk between integrins and growth factor receptors. Cardiovasc Res 63: 381–390.

    CAS  PubMed  Google Scholar 

  • Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88: 1112–1119.

    CAS  PubMed  Google Scholar 

  • Rota M, Boni A, Urbanek K, Padin-Iruegas ME, Kajstura TJ, Fiore G, Kubo H, Sonnenblick EH, Musso E, Houser SR, Leri A, Sussman MA, Anversa P (2005) Nuclear targeting of Akt enhances ventricular function and myocyte contractility. Circ Res 97: 1332–1341.

    CAS  PubMed  Google Scholar 

  • Sabri A, Steinberg SF (2003) Protein kinase C isoform-selective signals that lead to cardiac hypertrophy and the progression of heart failure. Mol Cell Biochem 251: 97–101.

    CAS  PubMed  Google Scholar 

  • Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J, Takagi G, Karoor V, Hong C, Johnson GL, Vatner DE, Vatner SF (2002) The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest 110: 271–279.

    CAS  PubMed  Google Scholar 

  • Salazar EP, Rozengurt E (2001) Src family kinases are required for integrin-mediated but not for G protein-coupled receptor stimulation of focal adhesion kinase autophosphorylation at Tyr-397. J Biol Chem 276: 17788–17795.

    CAS  PubMed  Google Scholar 

  • Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289: H2291–H2301.

    CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM (2005a) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17: 596–603.

    CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005b) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.

    CAS  PubMed  Google Scholar 

  • Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA 103: 7432–7437.

    CAS  PubMed  Google Scholar 

  • Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127: 1015–1026.

    CAS  PubMed  Google Scholar 

  • Schoenwaelder SM, Burridge K (1999) Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 11: 274–286.

    CAS  PubMed  Google Scholar 

  • Shai SY, Harpf AE, Babbitt CJ, Jordan MC, Fishbein MC, Chen J, Omura M, Leil TA, Becker KD, Jiang M, Smith DJ, Cherry SR, Loftus JC, Ross RS (2002) Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 90: 458–464.

    CAS  PubMed  Google Scholar 

  • Shiraishi I, Melendez J, Ahn Y, Skavdahl M, Murphy E, Welch S, Schaefer E, Walsh K, Rosenzweig A, Torella D, Nurzynska D, Kajstura J, Leri A, Anversa P, Sussman MA (2004) Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ Res 94: 884–891.

    CAS  PubMed  Google Scholar 

  • Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K (2005) The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280: 20814–20823.

    CAS  PubMed  Google Scholar 

  • Stawowy P, Margeta C, Blaschke F, Lindschau C, Spencer-Hansch C, Leitges M, Biagini G, Fleck E, Graf K (2005) Protein kinase C epsilon mediates angiotensin II-induced activation of beta1-integrins in cardiac fibroblasts. Cardiovasc Res 67: 50–59.

    CAS  PubMed  Google Scholar 

  • Sugden PH, Clerk A (1998) ‘Stress-responsive’ mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83: 345–352.

    CAS  PubMed  Google Scholar 

  • Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 105: 875–886.

    CAS  PubMed  Google Scholar 

  • Takagi J, Springer TA (2002) Integrin activation and structural rearrangement. Immunol Rev 186: 141–163.

    CAS  PubMed  Google Scholar 

  • Takahashi N, Seko Y, Noiri E, Tobe K, Kadowaki T, Sabe H, Yazaki Y (1999) Vascular endothelial growth factor induces activation and subcellular translocation of focal adhesion kinase (p125FAK) in cultured rat cardiac myocytes. Circ Res 84: 1194–1202.

    CAS  PubMed  Google Scholar 

  • Takeishi Y, Chu G, Kirkpatrick DM, Li Z, Wakasaki H, Kranias EG, King GL, Walsh RA (1998) In vivo phosphorylation of cardiac troponin I by protein kinase Cbeta2 decreases cardiomyocyte calcium responsiveness and contractility in transgenic mouse hearts. J Clin Invest 102: 72–78.

    CAS  PubMed  Google Scholar 

  • Talwar S, Squire IB, Downie PF, O’Brien RJ, Davies JE, Ng LL (2000) Elevated circulating cardiotrophin-1 in heart failure: relationship with parameters of left ventricular systolic dysfunction. Clin Sci (Lond) 99: 83–88.

    CAS  Google Scholar 

  • Taylor JM, Rovin JD, Parsons JT (2000) A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J Biol Chem 275: 19250–19257.

    CAS  PubMed  Google Scholar 

  • Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, Horowitz JC, Day RM, Thomas PE (2003) Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 278: 12384–12389.

    CAS  PubMed  Google Scholar 

  • Thorburn J, Xu S, Thorburn A (1997) MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. Embo J 16: 1888–1900.

    CAS  PubMed  Google Scholar 

  • Toker A, Newton AC (2000) Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 275: 8271–8274.

    CAS  PubMed  Google Scholar 

  • Torsoni AS, Constancio SS, Nadruz W, Jr., Hanks SK, Franchini KG (2003) Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93: 140–147.

    CAS  PubMed  Google Scholar 

  • Tremblay ML, Giguere V (2008) Phosphatases at the heart of FoxO metabolic control. Cell Metab 7: 101–103.

    CAS  PubMed  Google Scholar 

  • Troussard AA, Mawji NM, Ong C, Mui A, St -Arnaud R, Dedhar S (2003) Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J Biol Chem 278: 22374–22378.

    CAS  PubMed  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389: 990–994.

    CAS  PubMed  Google Scholar 

  • Ueyama T, Kawashima S, Sakoda T, Rikitake Y, Ishida T, Kawai M, Yamashita T, Ishido S, Hotta H, Yokoyama M (2000) Requirement of activation of the extracellular signal-regulated kinase cascade in myocardial cell hypertrophy. J Mol Cell Cardiol 32: 947–960.

    CAS  PubMed  Google Scholar 

  • Valencik ML, Keller RS, Loftus JC, McDonald JA (2002) A lethal perinatal cardiac phenotype resulting from altered integrin function in cardiomyocytes. J Card Fail 8: 262–272.

    CAS  PubMed  Google Scholar 

  • Valencik ML, McDonald JA (2001) Cardiac expression of a gain-of-function alpha(5)-integrin results in perinatal lethality. Am J Physiol Heart Circ Physiol 280: H361–H367.

    CAS  PubMed  Google Scholar 

  • Valencik ML, Zhang D, Punske B, Hu P, McDonald JA, Litwin SE (2006) Integrin activation in the heart: a link between electrical and contractile dysfunction? Circ Res 99: 1403–1410.

    CAS  PubMed  Google Scholar 

  • van der Flier A, Gaspar AC, Thorsteinsdottir S, Baudoin C, Groeneveld E, Mummery CL, Sonnenberg A (1997) Spatial and temporal expression of the beta1D integrin during mouse development. Dev Dyn 210: 472–486.

    PubMed  Google Scholar 

  • van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A (2001) The role of angiotensin II, endothelin-1 and transforming growth factor-beta as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 218: 113–124.

    PubMed  Google Scholar 

  • Wang F, Seta Y, Baumgarten G, Engel DJ, Sivasubramanian N, Mann DL (2001) Functional significance of hemodynamic overload-induced expression of leukemia-inhibitory factor in the adult mammalian heart. Circulation 103: 1296–1302.

    CAS  PubMed  Google Scholar 

  • Wang SM, Tsai YJ, Jiang MJ, Tseng YZ (1997) Studies on the function of rho A protein in cardiac myofibrillogenesis. J Cell Biochem 66: 43–53.

    CAS  PubMed  Google Scholar 

  • Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116: 1413–1423.

    CAS  PubMed  Google Scholar 

  • Wang Y, Huang S, Sah VP, Ross J, Jr., Brown JH, Han J, Chien KR (1998) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273: 2161–2168.

    CAS  PubMed  Google Scholar 

  • Wary KK, Mariotti A, Zurzolo C, Giancotti FG (1998) A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94: 625–634.

    CAS  PubMed  Google Scholar 

  • Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118: 843–846.

    CAS  PubMed  Google Scholar 

  • White DE, Coutu P, Shi YF, Tardif JC, Nattel S, St Arnaud R, Dedhar S, Muller WJ (2006) Targeted ablation of ILK from the murine heart results in dilated cardiomyopathy and spontaneous heart failure. Genes Dev 20: 2355–2360.

    CAS  PubMed  Google Scholar 

  • Wu C, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155: 505–510.

    CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124: 471–484.

    CAS  PubMed  Google Scholar 

  • Yasukawa H, Hoshijima M, Gu Y, Nakamura T, Pradervand S, Hanada T, Hanakawa Y, Yoshimura A, Ross J, Jr., Chien KR (2001) Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J Clin Invest 108: 1459–1467.

    CAS  PubMed  Google Scholar 

  • Zechner D, Thuerauf DJ, Hanford DS, McDonough PM, Glembotski CC (1997) A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression. J Cell Biol 139: 115–127.

    CAS  PubMed  Google Scholar 

  • Zhang KR, Liu HT, Zhang HF, Zhang QJ, Li QX, Yu QJ, Guo WY, Wang HC, Gao F (2007) Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism. Apoptosis 12: 1579–1588.

    CAS  PubMed  Google Scholar 

  • Zhang YM, Bo J, Taffet GE, Chang J, Shi J, Reddy AK, Michael LH, Schneider MD, Entman ML, Schwartz RJ, Wei L (2006) Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. Faseb J 20: 916–925.

    CAS  PubMed  Google Scholar 

  • Zhao J, Bian ZC, Yee K, Chen BP, Chien S, Guan JL (2003) Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol Cell 11: 1503–1515.

    CAS  PubMed  Google Scholar 

  • Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6: 499–506.

    CAS  PubMed  Google Scholar 

  • Zuluaga S, Alvarez-Barrientos A, Gutierrez-Uzquiza A, Benito M, Nebreda AR, Porras A (2007) Negative regulation of Akt activity by p38alpha MAP kinase in cardiomyocytes involves membrane localization of PP2A through interaction with caveolin-1. Cell Signal 19: 62–74.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Institutes of Health (HL-68838) and Scott and White Memorial Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Dostal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Netherlands

About this chapter

Cite this chapter

Lal, H., Verma, S.K., Golden, H.B., Foster, D.M., Holt, A.M., Dostal, D.E. (2009). Molecular Signaling Mechanisms of Myocardial Stretch: Implications for Heart Disease. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2850-1_3

Download citation

Publish with us

Policies and ethics