Skip to main content

Mechanical Stretch-Induced Reorganization of the Cytoskeleton and the Small GTPase Rac-1 in Cardiac Fibroblasts

  • Chapter
  • First Online:
Book cover Mechanosensitivity of the Heart

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 3))

Abstract

Mechanical forces play important roles in development and disease of most tissues. In vivo studies have illustrated that increased mechanical load as seen during neonatal development or in the hypertensive adult promote a fibrotic response in the heart. In vitro studies have established that mechanical stretch of isolated cardiac fibroblasts directly stimulates expression of extracellular matrix components and proliferation, both hallmarks of fibrosis. While significant advances have been made in understanding the effects of mechanical forces on cardiac fibroblasts, many questions remain regarding the mechanisms whereby mechanical forces are transduced into changes in cellular phenotype. The linkage between the extracellular matrix, integrin receptors and the cytoskeleton undoubtedly plays a critical role in this process. We have recently shown that mechanical stretch induces rapid changes in cardiac fibroblast morphology and the organization of the actin cytoskeleton. The Rho family of small GTPases has received considerable attention in their role in organizing the actin cytoskeleton. Data is presented herein providing quantitative analysis of alterations in the activation and subcellular organization of the small GTPase Rac-1 following equibiaxial stretch of isolated cardiac fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Ho C-H, Kamm KE, Grinnell F (2003) Different molecular motors mediate platlet-derived growth factor and lysophosphatidic acid-stimulated floating collagen matrix contraction. J Biol Chem 278: 47707–47712.

    Article  CAS  PubMed  Google Scholar 

  • Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, Hasegawa H, Akazawa H, Mizukami M, Nagai R, Komuro I (2001) Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun 289: 901–907.

    Article  CAS  PubMed  Google Scholar 

  • Anderson JC, Babb AL, Hlastala MP (2005) A fractal analysis of the radial distribution of bronchial capillaries around large airways. J Appl Physiol 98: 850–855.

    Article  PubMed  Google Scholar 

  • Atance J, Yost MJ, Carver W (2004) Influences of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch. J Cell Physiol 200: 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Baish JW, Jain RK (2000) Fractals and cancer. Cancer Res 60: 3683–3688.

    CAS  PubMed  Google Scholar 

  • Bassett CAL, Hermann L (1961) Influence of oxygen concentration and mechanical factors on differentiation of connective tissue in vitro. Nature 193: 460–461.

    Article  Google Scholar 

  • Behar TN (2001) Analysis of fractal dimension of O2A glial cells differentiating in vitro. Methods 24: 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Bernard F, Bossu JL, Gaillard S (2001) Identification of living oligodendrocyte developmental stages by fractal analysis of cell morphology. J Neurosci Res 65: 439–445.

    Article  CAS  PubMed  Google Scholar 

  • Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18: 472–481.

    Article  CAS  PubMed  Google Scholar 

  • Borg TK, Caulfield JB (1981) The collagen matrix of the heart. Fed Proc 40: 2037–2041.

    CAS  PubMed  Google Scholar 

  • Borg TK, Rubin K, Lundgren E, Borg K, Obrink B (1984) Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol 104: 86–96.

    Article  CAS  PubMed  Google Scholar 

  • Borodinsky LN, Fiszman ML (2001) A single-cell model to study changes in neuronal fractal dimension. Methods 24: 341–345.

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Del Re DP, Sussman MA (2006) The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 98: 730–742.

    Article  CAS  PubMed  Google Scholar 

  • Butt RP, Laurent GJ, Bishop JE (1995) Collagen production and replication by cardiac fibroblasts is enhanced in response to diverse classes of growth factors. Eur J Cell Biol 68: 330–335.

    CAS  PubMed  Google Scholar 

  • Caldwell CB, Moran EL, Bogoch ER (1998) Fractal dimension as a measure of altered trabecular bone in experimental inflammatory arthritis. J Bone Miner Res 13: 978–985.

    Article  CAS  PubMed  Google Scholar 

  • Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterization of cardiac fibroblasts. Cardiovasc Res 65: 40–51.

    Article  CAS  PubMed  Google Scholar 

  • Carver W, Nagpal ML, Nachtigal M, Borg TK, Terracio L (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69: 116–122.

    CAS  PubMed  Google Scholar 

  • Carver W, Terracio L. Borg TK (1993) Expression and accumulation of interstitial collagen in the neonatal rat heart. Anat Rec 511–520.

    Google Scholar 

  • Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, Schwarzer S, Stanley HE (1995) Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods 56: 133–144.

    Article  CAS  PubMed  Google Scholar 

  • Catalucci D, Latronico MV, Ellingsen O, Condorelli G (2008) Physiological myocardial hypertrophy: how and why? Front Biosci 13: 312–324.

    Article  CAS  PubMed  Google Scholar 

  • Cross SS (1997) Fractals in pathology. J Pathol 182: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • DeMeester SL, Cobb JP, Hotchkiss RS, Osborne DF, Karl IE, Tinsley KW, Buchman TG (1998). Stress-induced fractal rearrangement of the endothelial cell cytoskeleton causes apoptosis. Surgery 124: 362–371.

    CAS  PubMed  Google Scholar 

  • Fuseler JW, Merrill DM, Rogers JA, Grisham MB, Wolf RE (2006) Analysis and quantitation of NF-kappa B nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells. Microsc Microanal 12: 269–276

    Article  CAS  PubMed  Google Scholar 

  • Fuseler JW, Millette CF, Davis JM, Carver W (2007) Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch. Microsc Microanal 13: 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Gazit Y, Berk DA, Leunig M, Baxter LT, Jain, R K (1995) Scale-invariant behavior and vascular network formation in normal and tumor tissue. Phys Rev Lett 75: 2428–2431.

    Article  CAS  PubMed  Google Scholar 

  • Gazit Y, Baish JW, Safabakhsh N, Leunig M, Baxter LT, Jain RK (1997) Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation 4: 395–402.

    Article  CAS  PubMed  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix- cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Glucksmann A (1939) Studies on bone mechanics in vitro: II. The role of tension and pressure in chondrogenesis. Anat Rec 73: 39–56.

    Article  Google Scholar 

  • Goldsmith EC, Hoffman A, Morales MO, Potts JD, Price RL, McFadden A, Rice M, Borg TK (2004) Organization of fibroblasts in the heart. Develop Dyn 230: 787–794.

    Article  CAS  Google Scholar 

  • Grinnell F (2000) Fibroblast-collagen matrix contraction: growth factor signaling and mechanical loading. TRENDS Cell Biol 10: 362–365.

    Article  CAS  PubMed  Google Scholar 

  • Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices. TRENDS Cell Biol 13: 264–269.

    Article  CAS  PubMed  Google Scholar 

  • Grizzi F, Russo C, Colombo P, Franceschini B, Frezza EE, Cobos E, Chiriva-Internati M (2005) Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 5: 14–23.

    Article  PubMed  Google Scholar 

  • Hall A. (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509–514.

    Article  CAS  PubMed  Google Scholar 

  • Heymans O, Blacher S, Brouers F, Pierard GE (1999) Fractal quantification of the microvasculature heterogeneity in cutaneous melanoma. Dermatology 198: 212–217.

    Article  CAS  PubMed  Google Scholar 

  • Hu E, Lee D (2003) Rho kinase inhibitors as potential therapeutic agents for cardiovascular diseases. Curr Opin Investig Drugs 4: 1065–1075.

    CAS  PubMed  Google Scholar 

  • Hung CT, Williams JL (1994) A method for inducing equibiaxial and uniform strains in elastomeric membranes used as cell substrates. J Biomechanics 27: 227–232.

    Article  CAS  Google Scholar 

  • Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29: 364–370.

    Article  CAS  PubMed  Google Scholar 

  • Kawamura S, Miyamoto S, Brown JH (2003) Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem 278: 31111–31117.

    Article  CAS  PubMed  Google Scholar 

  • Lammerding J, Kamm RD, Lee RT (2004) Mechanotransduction in cardiac myocytes. Ann NY Acad Sci 1015: 53–70.

    Article  PubMed  Google Scholar 

  • Le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichman A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131: 361–375.

    Article  PubMed  Google Scholar 

  • Lee AA, Delhaas T, McCulloch AD, Villarreal FJ (1999) Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J Mol Cell Cardiol 31: 1833–1843.

    Article  CAS  PubMed  Google Scholar 

  • Lee AA, Delhaas T, Waldman LK, MacKenna DA, Villarreal FJ, McCulloch AD (1996) An equibiaxial strain system for cultured cells. Am J Physiol 271: C1400–C1408.

    CAS  PubMed  Google Scholar 

  • Lee DJ, Ho C-H, Grinnell F (2003) LPA-stimulated fibroblast contraction of floating collagen matrices does not require Rho kinase activity or retraction of fibroblast extensions. Expt Cell Res 289: 86–94.

    Article  CAS  Google Scholar 

  • Leung DY, Glagov S and Matthews MB (1976) Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191: 475–477.

    Google Scholar 

  • Leung DYM, Glagof S, Matthews MB (1977) A new in vitro system for studying cell response to mechanical stimulation. Expt Cell Res 109: 285–298.

    Article  CAS  Google Scholar 

  • Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134: 3317–3326.

    Article  CAS  PubMed  Google Scholar 

  • MacKenna DA, Dolfi F, Vuori K, Ruoslahti E (1998) Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J Clin Invest 101: 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Manser E. (2005) Rho GTPases in the organization of the actin cytoskeleton.In: Symons M, (ed.) Rho GTPases, New York: Kluwer Academic/Plenum Publishers, pp. 107–114.

    Chapter  Google Scholar 

  • Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119: 508–518.

    Article  CAS  PubMed  Google Scholar 

  • Michaelson D, Rush M, Philips MR (2005) Intracellular targeting of Rho family GTPases: implications of localization on function. In: Symons M, (ed.) Rho GTPases, New York: Kluwer Academic/Plenm Publishers, pp. 17–31.

    Google Scholar 

  • Moldovan L, Moldovan NI, Sohn RH, Parikh SA, Goldschmidt-Clermont PJ (2000) Redox changes of cultured endothelial cells and actin dynamics. Circ Res 86: 549–557.

    CAS  PubMed  Google Scholar 

  • Moldovan L, Mythreye K, Goldschmidt-Clermont PJ, Satterwhite LL (2006) Reactive oxygen species in vascular endothelial cell motility. Roles of NAD(P)H oxidase and Rac1. Cardiovasc Res 71: 236–246.

    Article  CAS  PubMed  Google Scholar 

  • Nezadal M, Zemeskal O, Buchnicek M (2001) The box-counting: critical study, 4th conference on prediction, synergetic and more… The Faculty of Management, Institute of Information Technologies, Faculty of Technology, Tomas Bata University in Zlin, October 25–26. p18. HarFA software (http://www.fch.vutbr.cz/lectures/imagesci).

  • Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM. (2005) PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 202: 536–553.

    Article  CAS  PubMed  Google Scholar 

  • Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC (1997) Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev 11: 463–475.

    Article  CAS  PubMed  Google Scholar 

  • Porter KE, Turner NA, O‘regan DJ, Balmforth AJ, Ball SG (2004) Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA. Cardiovasc Res 61: 745–755.

    Article  CAS  PubMed  Google Scholar 

  • Reithmacher D, Brinkmann V, Birchmeier C (1995) A targeted mutation in the mouse e-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci USA 92: 855–859.

    Article  Google Scholar 

  • Ren J, Fang CX (2005) Small guanine nucleotide-binding protein Rho and myocardial function. Acta Pharmacol Sin 26: 279–285.

    Article  CAS  PubMed  Google Scholar 

  • Ristanovic D, Nedeljkov V, Stefanovic BD, Milosevic NT, Grgurevic M, Stulic V (2002) Fractal and nonfractal analysis of cell images: comparison and application to neuronal dendritic arborization. Biol Cybern 87: 278–288.

    Article  CAS  PubMed  Google Scholar 

  • Rodan GA, Mensi T, Harvey A (1975) A quantitative method for application of compressive forces to bone in tissue culture. Calcified Tissue Res 18: 125–131.

    Article  CAS  Google Scholar 

  • Rogers JA, Fuseler JW (2007) Regulation of NF-kappa B activation and nuclear translocation by exogenous nitric oxide (NO) donors in TNF-alpha activated vascular endothelial cells. Nitric Oxide 16: 379–391.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Esteban J, Wang Y, Filardo EJ, Rubin LP, Ingber DE (2006) Integrins beta1, alpha6, and alpha3 contribute to mechanical strain-induced differentiation of fetal lung type II epithelial cells via distinct mechanisms. Am J Physiol Lung Cell Mol Physiol 290: L343–L350.

    Article  CAS  PubMed  Google Scholar 

  • Satoh S, Ueda Y, Koyanagi M, Kadokami T, Sugano M, Yoshikawa Y, Makino N (2003) Chronic inhibition of Rho kinase blunts the process of left ventricular hypertrophy leading to cardiac contractile dysfunction in hypertension-induced heat failure. J Mol Cell Cardiol 35: 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Schaffer JL, Rizen M, L’Italien GJ, Benbrahim A, Megerman J, Gerstenfeld LC, Gray ML (1994) Device for the application of biaxially uniform and isotropic strain to a flexible cell culture membrane. J Orthop Res 12: 709–719.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Hall MN. (1998) Signalling to the actin cytoskeleton. Annu Rev Cell Dev Biol 14: 305–338.

    Article  CAS  PubMed  Google Scholar 

  • Sedivy R, Thurner S, Budinsky AC, Kostler WJ, Zielinski CC (2002) Short-term rhythmic proliferation of human breast cancer cell lines: surface effects and fractal growth patterns. J Pathol 197: 163–169.

    Article  PubMed  Google Scholar 

  • Sulciner DJ, Irani K, Yu ZX, Ferrans VJ, Goldschmidt-Clermont P, Finkel T (1996) Rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB activation. Mol Cell Biol 16: 7115–7121.

    CAS  PubMed  Google Scholar 

  • Suematsu N, Satoh S, Kinugawa S, Tsutsui H, Hayashidani S, Nakamura R, Egashira K, Makino N, Takeshita A (2001) Alpha 1-adrenoceptor-Gq-RhoA signaling is upregulated to increase myofribillar Ca+2 sensitivity in failing hearts. Am J Physiol Heart Circ Physiol 281: H637–H646.

    CAS  PubMed  Google Scholar 

  • Thomason DB, Anderson O 3rd, Menon V (1996) Fractal analysis of cytoskeleton rearrangement in cardiac muscle during head-down tilt. J Appl Physiol 81: 1522–1527.

    CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW (2002) Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res 91: 1160–1167.

    Article  CAS  PubMed  Google Scholar 

  • Vasiliev JM (1991) Polarization of pseudopodial activities: cytoskeletal mechanisms. J Cell Sci 98: 1–4.

    PubMed  Google Scholar 

  • Walter Jr., RJ, Berns MW (1986) Digital image processing and analysis. In Inoue S, (ed.) Video Microscopy, New York and London: Plenum Press, pp. 327–392.

    Google Scholar 

  • Wei L, Roberts W, Wang L, Yamada M, Zhang S, Zhao Z, Rivkees SA, Schwartz RJ, Imanaka-Yoshida K (2001) Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 128: 2953–2962.

    CAS  PubMed  Google Scholar 

  • Wick N, Thurner S, Paiha K, Sedivy R, Vietor I, Huber LA (2003) Quantitative measurement of cell migration using time-lapse videomicroscopy and non-linear system analysis. Histochem Cell Biol 119: 15–20.

    CAS  PubMed  Google Scholar 

  • Yeh C, Rodan GA (1984) Tensile forces enhance PGE synthesis in osteoblasts grown on collagen ribbon. Calcif Tissue Int 36: 67–71.

    Article  Google Scholar 

  • Yoshigi M, Clark EB, Yost HJ (2003) Quantification of stretch-induced cytoskeletal remodeling in vascular endothelial cells by image processing. Cytometry A 55: 109–118.

    Article  PubMed  Google Scholar 

  • Yost MJ, Simpson D, Wrona K, Ridley S, Ploehn HJ, Borg TK, Terracio L (2000) Design and construction of a uniaxial stretcher. Am J Physiol Heart Circ Physiol 279: H3124–H3130.

    CAS  PubMed  Google Scholar 

  • Yuan X-B, Jin M, Xu X, Song Y-Q, Wu C-P, Poo M-M, Duan S (2003) Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nature Cell Biol 5: 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu JZ, Dean D, Sahgal V, Yue GH (2005) A three dimensional fractal analysis method for quantifying white matter structure in human brain. J Neurosci Methods 150: 242–253.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Carver, W., Fuseler, J.W. (2010). Mechanical Stretch-Induced Reorganization of the Cytoskeleton and the Small GTPase Rac-1 in Cardiac Fibroblasts. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2850-1_2

Download citation

Publish with us

Policies and ethics