Skip to main content

Stretch-Induced Inotropy in Atrial and Ventricular Myocardium

  • Chapter
  • First Online:
Mechanosensitivity of the Heart

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 3))

  • 762 Accesses

Abstract

Mechanical load directly regulates cardiac force. Stretching myocardial tissue results in a biphasic increase in contractility: an immediate increase (Frank-Starling mechanism) followed by a further slow increase (slow force response, SFR). Most experiments published have been performed in ventricular myocardium and very little in human tissue. We therefore highlight stretch dependent slow force responses in human myocardium and compare signal transduction in atrial and ventricular tissue. Although of comparable amplitude underlying signal transduction varies between the two tissue types. In ventricular muscle strips, the SFR is significantly reduced by inhibition of Na+/H+- (NHE) and Na+/Ca2+-exchange (NCX) but not affected by AT- and ET-receptor antagonism. In contrast, SFR in atrial tissue is neither affected by NHE- nor NCX-inhibition but interestingly, inhibition of AT-receptors or pre-incubation with angiotensin II or endothelin-1 attenuate the atrial SFR. In addition, stretch results in a large NHE-dependent [Na+]i increase in ventricle but only a small, NHE-independent [Na+]i increase in atrium. Stretch activated channels are not involved in the SFR in either tissue but contribute to basal force development in atrium but not ventricle. Thus, in human heart both atrial and ventricular myocardium exhibit a stretch-dependent SFR that is likely to serve as adjustment mechanism regulating cardiac output in case of increased preload. In ventricle on the one hand, there is a significant NHE-dependent (but angiotensin II- and endothelin-1- independent) [Na+]i increase that is translated into a [Ca2+]i and force increase via NCX. In atrium, on the other hand, there is an angiotensin II- and endothelin-dependent (but NHE- and NCX-independent) force increase. Increased myofilament Ca2+ sensitivity through MLCK-induced phosphorylation of MLC2 is contributing to the SFR in both atrium and ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DG & Kurihara S. (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327, 79–94.

    CAS  PubMed  Google Scholar 

  • Alvarez BV, Perez NG, Ennis IL, Camilion de Hurtado MC & Cingolani HE. (1999). Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res 85, 716–722.

    CAS  PubMed  Google Scholar 

  • Andersen GO, Qvigstad E, Schiander I, Aass H, Osnes JB & Skomedal T. (2002). Alpha(1)-AR-induced positive inotropic response in heart is dependent on myosin light chain phosphorylation. Am J Physiol Heart Circ Physiol 283, H1471–H1480.

    CAS  PubMed  Google Scholar 

  • Bluhm WF & Lew WY. (1995). Sarcoplasmic reticulum in cardiac length-dependent activation in rabbits. Am J Physiol 269, H965–H972.

    CAS  PubMed  Google Scholar 

  • Bluhm WF, Lew WY, Garfinkel A & McCulloch AD. (1998). Mechanisms of length history-dependent tension in an ionic model of the cardiac myocyte. Am J Physiol 274, H1032–H1040.

    CAS  PubMed  Google Scholar 

  • Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK & Sachs F. (2007). Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49, 249–270.

    Article  CAS  PubMed  Google Scholar 

  • Burrell KM, Molenaar P, Dawson PJ & Kaumann AJ. (2000). Contractile and arrhythmic effects of endothelin receptor agonists in human heart in vitro: blockade with SB 209670. J Pharmacol Exp Ther 292, 449–459.

    CAS  PubMed  Google Scholar 

  • Calaghan S & White E. (2004). Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart. J Physiol 559, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Calaghan SC, Colyer J & White E. (1999). Cyclic AMP but not phosphorylation of phospholamban contributes to the slow inotropic response to stretch in ferret papillary muscle. Pflugers Arch 437, 780–782.

    Article  CAS  PubMed  Google Scholar 

  • Calaghan SC & White E. (2001). Contribution of angiotensin II, endothelin 1 and the endothelium to the slow inotropic response to stretch in ferret papillary muscle. Pflugers Arch 441, 514–520.

    Article  CAS  PubMed  Google Scholar 

  • Chuck LH & Parmley WW. (1980). Caffeine reversal of length-dependent changes in myocardial contractile state in the cat. Circ Res 47, 592–598.

    CAS  PubMed  Google Scholar 

  • Cingolani HE, Perez NG, Camilion de Hurtado MC. (2001). An autocrine/paracrine mechanism triggered by myocardial stretch induces changes in contractility. News Physiol Sci 16, 88–91.

    CAS  PubMed  Google Scholar 

  • Ennis IL, Garciarena CD, Perez NG, Dulce RA, Camilion de Hurtado MC & Cingolani HE. (2005). Endothelin isoforms and the response to myocardial stretch. Am J Physiol Heart Circ Physiol 288, H2925–H2930.

    Article  CAS  PubMed  Google Scholar 

  • Grimm M, Haas P, Willipinski-Stapelfeldt B, Zimmermann WH, Rau T, Pantel K, Weyand M & Eschenhagen T. (2005). ***Key role of myosin light chain (MLC) kinase-mediated MLC2a phosphorylation in the alpha 1-adrenergic positive inotropic effect in human atrium. Cardiovasc Res 65, 211–220.

    Article  CAS  PubMed  Google Scholar 

  • Hamill OP, McBride DW, Jr. (1996). The pharmacology of mechanogated membrane ion channels. Pharmacol Rev 48, 231–252.

    CAS  PubMed  Google Scholar 

  • Hibberd MG & Jewell BR. (1982). Calcium- and length-dependent force production in rat ventricular muscle. J Physiol 329, 527–540.

    CAS  PubMed  Google Scholar 

  • Holubarsch C, Hasenfuss G, Schmidt-Schweda S, Knorr A, Pieske B, Ruf T, Fasol R & Just H.(1993). Angiotensin I and II exert inotropic effects in atrial but not in ventricular human myocardium. An in vitro study under physiological experimental conditions. Circulation 88, 1228–1237.

    CAS  PubMed  Google Scholar 

  • Hongo K, White E, Le Guennec JY & Orchard CH. (1996). Changes in [Ca2+]i, [Na+]i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length. J Physiol 491 (Pt 3), 609–619.

    CAS  PubMed  Google Scholar 

  • Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I & Kamkin A. (2003). Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Prog Biophys Mol Biol 82, 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Bohm J, Theres H, Gunther J & Scholz H. (2003). Characterization of stretch-activated ion currents in isolated atrial myocytes from human hearts. Pflugers Arch 446, 339–346.

    CAS  PubMed  Google Scholar 

  • Kentish JC, ter Keurs HE, Ricciardi L, Bucx JJ & Noble MI. (1986). Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58, 755–768.

    CAS  PubMed  Google Scholar 

  • Kentish JC & Wrzosek A. (1998). Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. J Physiol 506 (Pt 2), 431–444.

    Article  CAS  PubMed  Google Scholar 

  • Kondratev D & Gallitelli MF. (2003). Increments in the concentrations of sodium and calcium in cell compartments of stretched mouse ventricular myocytes. Cell Calcium 34, 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Konhilas JP, Irving TC, de Tombe PP. (2002). Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation. Pflugers Arch 445, 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Luers C, Fialka F, Elgner A, Zhu D, Kockskamper J, von Lewinski D & Pieske B. (2005). Stretch-dependent modulation of [Na+]i, [Ca2+]i, and pHi in rabbit myocardium–a mechanism for the slow force response. Cardiovasc Res 68, 454–463.

    Article  CAS  PubMed  Google Scholar 

  • Niederer SA & Smith NP. (2007). A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophys J 92, 4030–4044.

    Article  CAS  PubMed  Google Scholar 

  • Parmley WW & Chuck L. (1973). Length-dependent changes in myocardial contractile state. Am J Physiol 224, 1195–1199.

    CAS  PubMed  Google Scholar 

  • Perez NG, de Hurtado MC & Cingolani HE. (2001). Reverse mode of the Na+-Ca2+ exchange after myocardial stretch: underlying mechanism of the slow force response. Circ Res 88, 376–382.

    CAS  PubMed  Google Scholar 

  • Petroff MG, Kim SH, Pepe S, Dessy C, Marban E, Balligand JL & Sollott SJ. (2001). Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3, 867–873.

    Article  CAS  PubMed  Google Scholar 

  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM & Sachs F. (2000). Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115, 583–598.

    Article  CAS  PubMed  Google Scholar 

  • Tavi P, Han C & Weckstrom M. (1998). Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes: role of increased troponin C affinity and stretch-activated ion channels. Circ Res 83, 1165–1177.

    CAS  PubMed  Google Scholar 

  • Tavi P, Han C & Weckstrom M. (1999). Intracellular acidosis modulates the stretch-induced changes in E-C coupling of the rat atrium. Acta Physiol Scand 167, 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Tavi P, Weckstrom M & Ruskoaho H. (2000). cAMP- and cGMP-independent stretch-induced changes in the contraction of rat atrium. Pflugers Arch 441, 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Todaka K, Ogino K, Gu A & Burkhoff D. (1998). Effect of ventricular stretch on contractile strength, calcium transient, and cAMP in intact canine hearts. Am J Physiol 274, H990–H1000.

    CAS  PubMed  Google Scholar 

  • von Lewinski D, Stumme B, Fialka F, Luers C & Pieske B. (2004). Functional relevance of the stretch-dependent slow force response in failing human myocardium. Circ Res 94, 1392–1398.

    Article  Google Scholar 

  • von Lewinski D, Stumme B, Maier LS, Luers C, Bers DM & Pieske B. (2003). Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent. Cardiovasc Res 57, 1052–1061.

    Article  Google Scholar 

  • White E, Boyett MR & Orchard CH. (1995). The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. J Physiol 482 ( Pt 1), 93–107.

    CAS  PubMed  Google Scholar 

  • Zima AV & Blatter LA. (2004). Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias. J Physiol 555, 607–615.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ studies were supported by grants from the Deutsche Forschungsgemeinschaft (to JK & BP: PI 414/1 and PI 414/2, Klinische Forschergruppe 155, TP 6), the German Ministry for Education and Research (BMBF, Kompetenznetz Herzinsuffizienz, TP 8, to TE and BP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk von Lewinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

von Lewinski, D., Kockskämper, J., Khafaga, M., Gasser, R., Pieske, B. (2010). Stretch-Induced Inotropy in Atrial and Ventricular Myocardium. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2850-1_14

Download citation

Publish with us

Policies and ethics