Skip to main content

The Contribution of MEF to Electrical Heterogeneity and Arrhythmogenesis

  • Chapter
  • First Online:
Mechanosensitivity of the Heart

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 3))

Abstract

Much progress has been made in understanding the mechanisms underlying arrhythmias. It is now clear that electrophysiological properties of the myocardium at a cellular level are very different in different parts of the heart, even over fairly small distances (for example across the thickness of the left ventricular wall). However, most models of arrhythmogenesis do not include the role that mechanical forces on the myocardium play in altering its electrophysiology (a process called mechanoelectric feedback, or MEF). Stretch of the myocardium can alter action potential morphology, propagation velocity and intracellular calcium handling, all of which can contribute to arrhythmogenesis. In particular, it is now becoming clear that MEF is not homogeneous in the heart. It is also clear that MEF is altered in some diseases such as hypertrophy, where it may explain the propensity to arrhythmias in these diseases. Here, we discuss the evidence that MEF is heterogeneous in the heart, in the same way that other electrophysiological properties are heterogeneous. The reasons why this may be are discussed. The possible role that this heterogeneity, and its modulation in some common cardiac diseases, plays in the induction of arrhythmias is also explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, stress and strain are used in their engineering context: Stress is defined as force per unit area, while strain is the deformation produced by the application of such a force.

  2. 2.

    When discussing the effects of stretch on conduction velocity, one must distinguish between changes in conduction time between two points separated by a constant distance (apparent conduction velocity) and changes in conduction between two landmarks on the surface of the muscle (true conduction velocity). The distinction can have important implications for mechanisms of arrhythmogenesis.

References

  • Aimond F, Rauzier JM, Bony C and Vassort G (2000) Simultaneous activation of p38 MAPK and p42/44 MAPK by ATP stimulates the K+ current ITREK in cardiomyocytes. J Biol Chem 275, 39110–6.

    CAS  PubMed  Google Scholar 

  • Allessie MA, Boyden PA, Camm AJ, Kleber AG, Lab MJ, Legato MJ, Rosen MR, Schwartz PJ, Spooner PM, Van Wagoner DR and Waldo AL (2001) Pathophysiology and prevention of atrial fibrillation. Circulation 103, 769–77.

    CAS  PubMed  Google Scholar 

  • Antoniou A, Milonas D, Kanakakis J, Rokas S and Sideris DA (1997) Contraction-excitation feedback in human atrial fibrillation. Clin Cardiol 20, 473–6.

    CAS  PubMed  Google Scholar 

  • Antzelevitch C (2004) Cellular basis and mechanism underlying normal and abnormal myocardial repolarization and arrhythmogenesis. Ann Med 36 Suppl 1, 5–14.

    CAS  PubMed  Google Scholar 

  • Antzelevitch C, Sicouri S, Litovsky SH, Lukas A, Krishnan SC, Di Diego JM, Gintant GA and Liu DW (1991) Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circ Res 69, 1427–49.

    CAS  PubMed  Google Scholar 

  • Antzelevitch C, Yan GX and Shimizu W (1999) Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT syndrome. J Electrocardiol 32 Suppl, 158–65.

    PubMed  Google Scholar 

  • Babuty D and Lab MJ (2001) Mechanoelectric contributions to sudden cardiac death. Cardiovasc Res 50, 270–9.

    CAS  PubMed  Google Scholar 

  • Bainbridge FA (1915) The influence of venous filling upon the rate of the heart. J Physiol 50, 65–84.

    CAS  PubMed  Google Scholar 

  • Barr CS, Naas A, Freeman M, Lang CC and Struthers AD (1994) QT dispersion and sudden unexpected death in chronic heart failure. Lancet 343, 327–9.

    CAS  PubMed  Google Scholar 

  • Barritt, G. and Rychkov, G. (2005) TRPs as mechanosensitive channels. Nat Cell Biol 7, 105–7.

    Google Scholar 

  • Belmonte S and Morad M (2008) ‘Pressure-flow’-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria. J Physiol 586, 1379–97.

    CAS  PubMed  Google Scholar 

  • Bode F, Sachs F and Franz MR (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–6.

    CAS  PubMed  Google Scholar 

  • Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK and Sachs F (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49, 249–70.

    CAS  PubMed  Google Scholar 

  • Boyden PA and Hoffman BF (1981) The effects on atrial electrophysiology and structure of surgically induced right atrial enlargement in dogs. Circ Res 49, 1319–31.

    CAS  PubMed  Google Scholar 

  • Brodsky MA, Allen BJ, Capparelli EV, Luckett CR, Morton R and Henry WL (1989) Factors determining maintenance of sinus rhythm after chronic atrial fibrillation with left atrial dilatation. Am J Cardiol 63, 1065–8.

    CAS  PubMed  Google Scholar 

  • Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN and McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281, 33487–96.

    CAS  PubMed  Google Scholar 

  • Calaghan SC, Belus A and White E (2003) Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Prog Biophys Mol Biol 82, 81–95.

    CAS  PubMed  Google Scholar 

  • Camelliti P, Green CR, LeGrice I and Kohl P (2004) Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 94, 828–35.

    CAS  PubMed  Google Scholar 

  • Cazorla O, Wu Y, Irving TC and Granzier H (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88, 1028–35.

    CAS  PubMed  Google Scholar 

  • Chang SL, Chen YC, Chen YJ, Wangcharoen W, Lee SH, Lin CI and Chen SA (2007) Mechanoelectrical feedback regulates the arrhythmogenic activity of pulmonary veins. Heart 93, 82–8.

    PubMed  Google Scholar 

  • Chen PS, Chou CC, Tan AY, Zhou S, Fishbein MC, Hwang C, Karagueuzian HS and Lin SF (2006) The mechanisms of atrial fibrillation. J Cardiovasc Electrophysiol 17 Suppl 3, S2–7.

    PubMed  Google Scholar 

  • Cherry EM, Ehrlich JR, Nattel S and Fenton FH (2007) Pulmonary vein reentry – properties and size matter: insights from a computational analysis. Heart Rhythm 4, 1553–62.

    PubMed  Google Scholar 

  • Chorro FJ, Egea S, Mainar L, Canoves J, Sanchis J, Llavador E, Lopez-Merino V and Such L (1998) [Acute changes in wavelength of the process of auricular activation induced by stretching. Experimental study]. Rev Esp Cardiol 51, 874–83.

    CAS  PubMed  Google Scholar 

  • Chou CC, Nihei M, Zhou S, Tan A, Kawase A, Macias ES, Fishbein MC, Lin SF and Chen PS (2005) Intracellular calcium dynamics and anisotropic reentry in isolated canine pulmonary veins and left atrium. Circulation 111, 2889–97.

    CAS  PubMed  Google Scholar 

  • Cooper PJ, Lei M, Cheng LX and Kohl P (2000) Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol 89, 2099–104.

    CAS  PubMed  Google Scholar 

  • Cordeiro JM, Greene L, Heilmann C, Antzelevitch D and Antzelevitch C (2004) Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle. Am J Physiol Heart Circ Physiol 286, H1471–9.

    CAS  PubMed  Google Scholar 

  • Cowan JC, Hilton CJ, Griffiths CJ, Tansuphaswadikul S, Bourke JP, Murray A and Campbell RW (1988) Sequence of epicardial repolarisation and configuration of the T wave. Br Heart J 60, 424–33.

    CAS  PubMed  Google Scholar 

  • Dean, J. W. and Lab, M. J. (1990) Regional changes in ventricular excitability during load manipulation of the in situ pig heart. J Physiol 429, 387–400.

    Google Scholar 

  • Deck KA (1964) [Changes in the resting potential and the cable properties of Purkinje fibers during stretch]. Pflugers Arch Gesamte Physiol Menschen Tiere 280, 131–40.

    CAS  PubMed  Google Scholar 

  • Dixon JE and McKinnon D (1994) Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res 75, 252–60.

    CAS  PubMed  Google Scholar 

  • Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS, Cohen IS and McKinnon D (1996) Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res 79, 659–68.

    CAS  PubMed  Google Scholar 

  • Dogan A, Avsar A and Ozturk M (2004) P-wave dispersion for predicting maintenance of sinus rhythm after cardioversion of atrial fibrillation. Am J Cardiol 93, 368–71.

    PubMed  Google Scholar 

  • Dominguez G and Fozzard HA (1979) Effect of stretch on conduction velocity and cable properties of cardiac Purkinje fibers. Am J Physiol 237, C119–24.

    CAS  PubMed  Google Scholar 

  • Dudel J and Trautwein W (1954) [Effect of stretch on action potentials and mechanogram of the heart muscle.]. Cardiologia 25, 344–62.

    CAS  PubMed  Google Scholar 

  • Dutertre J, Jean CF, Cartier R and Dieudonne JM (1972) Measurement of tissular strain with a tripod-like transducer – I. Med Biol Eng 10, 277–81.

    CAS  PubMed  Google Scholar 

  • Eckardt L, Kirchhof P, Breithardt G and Haverkamp W (2001) Load-induced changes in repolarization: evidence from experimental and clinical data. Basic Res Cardiol 96, 369–80.

    CAS  PubMed  Google Scholar 

  • Eijsbouts SC, Majidi M, van Zandvoort M and Allessie MA (2003) Effects of acute atrial dilation on heterogeneity in conduction in the isolated rabbit heart. J Cardiovasc Electrophysiol 14, 269–78.

    PubMed  Google Scholar 

  • Fabiato A and Fabiato F (1978) Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J Gen Physiol 72, 667–99.

    CAS  PubMed  Google Scholar 

  • Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C and Lazdunski M (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. Embo J 15, 6854–62.

    CAS  PubMed  Google Scholar 

  • Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M and Lazdunski M (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. Embo J 17, 3297–308.

    CAS  PubMed  Google Scholar 

  • Fiset C and Giles WR (2006) Transmural gradients of repolarization and excitation-contraction coupling in mouse ventricle. Circ Res 98, 1237–9.

    CAS  PubMed  Google Scholar 

  • Franz MR and Bode F (2003) Mechano-electrical feedback underlying arrhythmias: the atrial fibrillation case. Prog Biophys Mol Biol 82, 163–74.

    PubMed  Google Scholar 

  • Franz MR, Cima R, Wang D, Profitt D and Kurz R (1992) Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86, 968–78.

    CAS  PubMed  Google Scholar 

  • Fukuda N, Wu Y, Farman G, Irving TC and Granzier H (2005) Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle. Pflugers Arch 449, 449–57.

    CAS  PubMed  Google Scholar 

  • Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S and Demolombe S (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582, 675–93.

    CAS  PubMed  Google Scholar 

  • Han J and Moe GK (1964) Nonuniform recovery of excitability in ventricular muscle. Circ Res 14, 44–60.

    CAS  PubMed  Google Scholar 

  • Hansen DE, Borganelli M, Stacy GP Jr. and Taylor LK (1991) Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ Res 69, 820–31.

    CAS  PubMed  Google Scholar 

  • Hansen DE, Craig CS and Hondeghem LM (1990) Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation 81, 1094–105.

    CAS  PubMed  Google Scholar 

  • Henry WL, Morganroth J, Pearlman AS, Clark CE, Redwood DR, Itscoitz SB and Epstein SE (1976) Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 53, 273–9.

    CAS  PubMed  Google Scholar 

  • Hoglund C and Rosenhamer G (1985) Echocardiographic left atrial dimension as a predictor of maintaining sinus rhythm after conversion of atrial fibrillation. Acta Med Scand 217, 411–5.

    CAS  PubMed  Google Scholar 

  • Honore E, Maingret F, Lazdunski M and Patez AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K+ channel TREK-1. Embo J 21, 2968–76.

    CAS  PubMed  Google Scholar 

  • Hooks DA, Trew ML, Caldwell BJ, Sands GB, LeGrice IJ and Smaill BH (2007) Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ Res 101, e103–12.

    CAS  PubMed  Google Scholar 

  • Housmans PR, Lee NK and Blinks JR (1983) Active shortening retards the decline of the intracellular calcium transient in mammalian heart muscle. Science 221, 159–61.

    CAS  PubMed  Google Scholar 

  • Hu H and Sachs F (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29, 1511–23.

    CAS  PubMed  Google Scholar 

  • Huang JL, Tai CT, Chen JT, Ting CT, Chen YT, Chang MS and Chen SA (2003) Effect of atrial dilatation on electrophysiologic properties and inducibility of atrial fibrillation. Basic Res Cardiol 98, 16–24.

    PubMed  Google Scholar 

  • Huang MH, Friend DS, Sunday ME, Singh K, Haley K, Austen KF, Kelly RA and Smith TW (1996) An intrinsic adrenergic system in mammalian heart. J Clin Invest 98, 1298–303.

    CAS  PubMed  Google Scholar 

  • Jalife J (2003) Experimental and clinical AF mechanisms: bridging the divide. J Interv Card Electrophysiol 9, 85–92.

    PubMed  Google Scholar 

  • James PR, Hardman SM and Taggart P (2002) Physiological changes in ventricular filling alter cardiac electrophysiology in patients with abnormal ventricular function. Heart 88, 149–52.

    CAS  PubMed  Google Scholar 

  • Ji S, John SA, Lu Y and Weiss JN (1998) Mechanosensitivity of the cardiac muscarinic potassium channel. A novel property conferred by Kir3.4 subunit. J Biol Chem 273, 1324–8.

    CAS  PubMed  Google Scholar 

  • Kalifa J, Jalife J, Zaitsev AV, Bagwe S, Warren M, Moreno J, Berenfeld O and Nattel S (2003) Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation 108, 668–71.

    PubMed  Google Scholar 

  • Kamkin A, Kiseleva I and Isenberg G (2000) Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc Res 48, 409–20.

    CAS  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I and Isenberg G (2003a) Activation and inactivation of a non-selective cation conductance by local mechanical deformation of acutely isolated cardiac fibroblasts. Cardiovasc Res 57, 793–803.

    CAS  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Bohm J, Theres H, Gunther J and Scholz H (2003b) Characterization of stretch-activated ion currents in isolated atrial myocytes from human hearts. Pflugers Arch 446, 339–46.

    CAS  PubMed  Google Scholar 

  • Kelly D, Mackenzie L, Hunter P, Smaill B and Saint DA (2006) Gene expression of stretch-activated channels and mechanoelectric feedback in the heart. Clin Exp Pharmacol Physiol 33, 642–8.

    CAS  PubMed  Google Scholar 

  • Kim Y, Bang H and Kim D (1999) TBAK-1 and TASK-1, two-pore K(+) channel subunits: kinetic properties and expression in rat heart. Am J Physiol 277, H1669–78.

    CAS  PubMed  Google Scholar 

  • Kiseleva I, Kamkin A, Wagner KD, Theres H, Ladhoff A, Scholz H, Gunther J and Lab MJ (2000) Mechanoelectric feedback after left ventricular infarction in rats. Cardiovasc Res 45, 370–8.

    CAS  PubMed  Google Scholar 

  • Kohl P, Hunter P and Noble D (1999) Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models. Prog Biophys Mol Biol 71, 91–138.

    CAS  PubMed  Google Scholar 

  • Kuijpers NH, ten Eikelder HM, Bovendeerd PH, Verheule S, Arts T and Hilbers PA (2007) Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria: a modeling study of cardiac electromechanics. Am J Physiol Heart Circ Physiol 292, H2832–53.

    CAS  PubMed  Google Scholar 

  • Lab MJ (1999) Mechanosensitivity as an integrative system in heart: an audit. Prog Biophys Mol Biol 71, 7–27.

    CAS  PubMed  Google Scholar 

  • Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G and Barhanin J (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. Embo J 15, 1004–11.

    CAS  PubMed  Google Scholar 

  • Lesage F and Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279, F793–801.

    CAS  PubMed  Google Scholar 

  • Lesage F, Terrenoire C, Romey G and Lazdunski M (2000) Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275, 28398–405.

    CAS  PubMed  Google Scholar 

  • Lin JM, Lin JL, Lai LP, Tseng YZ and Stephen Huang SK (2002) Predictors of clinical recurrence after successful electrical cardioversion of chronic persistent atrial fibrillation: clinical and electrophysiological observations. Cardiology 97, 133–7.

    PubMed  Google Scholar 

  • Link MS and Estes NA 3rd (2007) Mechanically induced ventricular fibrillation (commotio cordis). Heart Rhythm 4, 529–32.

    PubMed  Google Scholar 

  • Liu J, Noble PJ, Xiao G, Abdelrahman M, Dobrzynski H, Boyett MR, Lei M and Noble D (2008) Role of pacemaking current in cardiac nodes: insights from a comparative study of sinoatrial node and atrioventricular node. Prog Biophys Mol Biol 96, 294–304.

    PubMed  Google Scholar 

  • Liu W and Saint DA (2004) Heterogeneous expression of tandem-pore K+ channel genes in adult and embryonic rat heart quantified by real-time polymerase chain reaction. Clin Exp Pharmacol Physiol 31, 174–8.

    CAS  PubMed  Google Scholar 

  • Maingret F, Honore E, Lazdunski M and Patel AJ (2002) Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K(+) channel. Biochem Biophys Res Commun 292, 339–46.

    CAS  PubMed  Google Scholar 

  • Manios EG, Mavrakis HE, Kanoupakis EM, Kallergis EM, Kafarakis PK and Vardas PE (2006) Evidence of mechanoelectric feedback in the atria of patients with atrioventricular nodal reentrant tachycardia. J Interv Card Electrophysiol 16, 51–7.

    PubMed  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B and Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7, 179–85.

    CAS  PubMed  Google Scholar 

  • Mills RW, Narayan SM and McCulloch AD (2008) Mechanisms of conduction slowing during myocardial stretch by ventricular volume loading in the rabbit. Am J Physiol Heart Circ Physiol 295, H1270–78.

    CAS  PubMed  Google Scholar 

  • Mitro P and Spegar J (2006) Dynamic changes of P-wave duration and P-wave axis during head-up tilt test in patients with vasovagal syncope. Pacing Clin Electrophysiol 29, 742–6.

    PubMed  Google Scholar 

  • Morris CE and Juranka PF (2007) Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch. Biophys J 93, 822–33.

    CAS  PubMed  Google Scholar 

  • Nélaton, A., 1876. In: Pean, J., Editor, 1876. Elements de pathologie chirurgicale Vol. 4, Librairie Germer Bateliere et Co., Paris.

    Google Scholar 

  • Ninio DM, Murphy KJ, Howe PR and Saint DA (2005) Dietary fish oil protects against stretch-induced vulnerability to atrial fibrillation in a rabbit model. J Cardiovasc Electrophysiol 16, 1189–94.

    PubMed  Google Scholar 

  • Ninio DM and Saint DA (2008) The role of stretch-activated channels in atrial fibrillation and the impact of intracellular acidosis. Prog Biophys Mol Biol 97, 401–16.

    CAS  PubMed  Google Scholar 

  • Nishimura S, Kawai Y, Nakajima T, Hosoya Y, Fujita H, Katoh M, Yamashita H, Nagai R and Sugiura S (2006) Membrane potential of rat ventricular myocytes responds to axial stretch in phase, amplitude and speed-dependent manners. Cardiovasc Res 72, 403–11.

    CAS  PubMed  Google Scholar 

  • Niu W and Sachs F (2003) Dynamic properties of stretch-activated K+ channels in adult rat atrial myocytes. Prog Biophys Mol Biol 82, 121–35.

    CAS  PubMed  Google Scholar 

  • Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T and Ito H (2007) Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 42, 498–507.

    CAS  PubMed  Google Scholar 

  • O’Neil, R. G. and Heller, S. (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451, 193–203.

    Google Scholar 

  • Patel SP and Campbell DL (2005) Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 569, 7–39.

    CAS  PubMed  Google Scholar 

  • Pedersen SF, Owsianik G and Nilius B (2005) TRP channels: an overview. Cell Calcium 38, 233–52.

    CAS  PubMed  Google Scholar 

  • Penefsky Z and Hoffman B (1963) Effect of stretch on mechanical and electrical properties of cardiac muscle. Am J Physiol 204, 433–38.

    Google Scholar 

  • Pereon Y, Demolombe S, Baro I, Drouin E, Charpentier F and Escande D (2000) Differential expression of KvLQT1 isoforms across the human ventricular wall. Am J Physiol Heart Circ Physiol 278, H1908–15.

    CAS  PubMed  Google Scholar 

  • Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT and Jalife J (1993) Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res 72, 631–50.

    CAS  PubMed  Google Scholar 

  • Poelzing S and Rosenbaum DS (2004) Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol 287, H1762–70.

    CAS  PubMed  Google Scholar 

  • Psaty BM, Manolio TA, Kuller LH, Kronmal RA, Cushman M, Fried LP, White R, Furberg CD and Rautaharju PM (1997) Incidence of and risk factors for atrial fibrillation in older adults. Circulation 96, 2455–61.

    CAS  PubMed  Google Scholar 

  • Pye M, Quinn AC and Cobbe SM (1994) QT interval dispersion: a non-invasive marker of susceptibility to arrhythmia in patients with sustained ventricular arrhythmias? Br Heart J 71, 511–4.

    CAS  PubMed  Google Scholar 

  • Ravelli F and Allessie M (1997) Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation 96, 1686–95.

    CAS  PubMed  Google Scholar 

  • Ravelli F, Disertori M, Cozzi F, Antolini R and Allessie MA (1994) Ventricular beats induce variations in cycle length of rapid (type II) atrial flutter in humans. Evidence of leading circle reentry. Circulation 89, 2107–16.

    CAS  PubMed  Google Scholar 

  • Reiter, M. J., Synhorst, D. P. and Mann, D. E. (1988) Electrophysiological effects of acute ventricular dilatation in the isolated rabbit heart. Circ Res 62, 554–62.

    Google Scholar 

  • Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD and Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109, 95–104.

    CAS  PubMed  Google Scholar 

  • Saint DA (2002) Stretch-activated channels in the heart: their role in arrhythmias and potential as antiarrhythmic drug targets. Drug Dev Res 55, 53–8.

    CAS  Google Scholar 

  • Satoh T and Zipes DP (1996) Unequal atrial stretch in dogs increases dispersion of refractoriness conducive to developing atrial fibrillation. J Cardiovasc Electrophysiol 7, 833–42.

    CAS  PubMed  Google Scholar 

  • Savelieva I and Camm J (2008) Anti-arrhythmic drug therapy for atrial fibrillation: current anti-arrhythmic drugs, investigational agents, and innovative approaches. Europace 10, 647–65.

    PubMed  Google Scholar 

  • Sengupta, P. P., Khandheria, B. K., Korinek, J., Wang, J., Jahangir, A., Seward, J. B. and Belohlavek, M. (2006) Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J Am Coll Cardiol 47, 163–72.

    Google Scholar 

  • Seol CA, Kim WT, Ha JM, Choe H, Jang YJ, Youm JB, Earm YE and Leem CH (2008) Stretch-activated currents in cardiomyocytes isolated from rabbit pulmonary veins. Prog Biophys Mol Biol 97, 217–31.

    CAS  PubMed  Google Scholar 

  • Shah DC, Haissaguerre M, Jais P and Clementy J (2002) High-resolution mapping of tachycardia originating from the superior vena cava: evidence of electrical heterogeneity, slow conduction, and possible circus movement reentry. J Cardiovasc Electrophysiol 13, 388–92.

    PubMed  Google Scholar 

  • Shlykov SG, Yang M, Alcorn JL and Sanborn BM (2003) Capacitative cation entry in human myometrial cells and augmentation by hTrpC3 overexpression. Biol Reprod 69, 647–55.

    CAS  PubMed  Google Scholar 

  • Sideris DA, Toumanidis ST, Thodorakis M, Kostopoulos K, Tselepatiotis E, Langoura C, Stringli T and Moulopoulos SD (1994) Some observations on the mechanism of pressure related atrial fibrillation. Eur Heart J 15, 1585–9.

    CAS  PubMed  Google Scholar 

  • Solti F, Vecsey T and Kekesi V (1989a) Effect of atrial dilatation on the tendency of atrial arrhythmias. Acta Physiol Hung 74, 49–55.

    CAS  PubMed  Google Scholar 

  • Solti F, Vecsey T, Kekesi V and Juhasz-Nagy A (1989b) The effect of atrial dilatation on the genesis of atrial arrhythmias. Cardiovasc Res 23, 882–6.

    CAS  PubMed  Google Scholar 

  • Stacy GP Jr., Jobe RL, Taylor LK and Hansen DE (1992) Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. Am J Physiol 263, H613–21.

    PubMed  Google Scholar 

  • Stilli D, Berni R, Bocchi L, Zaniboni M, Cacciani F, Sgoifo A and Musso E (2004) Vulnerability to ventricular arrhythmias [corrected] and heterogeneity of action potential duration in normal rats. Exp Physiol 89, 387–96.

    PubMed  Google Scholar 

  • Stones R, Calaghan SC, Billeter R, Harrison SM and White E (2007) Transmural variations in gene expression of stretch-modulated proteins in the rat left ventricle. Pflugers Arch 454, 545–9.

    CAS  PubMed  Google Scholar 

  • Stones R, Gilbert SH, Benoist D and White E (2008) Inhomogeneity in the response to mechanical stimulation: cardiac muscle function and gene expression. Prog Biophys Mol Biol 97, 268–81.

    CAS  PubMed  Google Scholar 

  • Sung D, Mills RW, Schettler J, Narayan SM, Omens JH and McCulloch AD (2003) Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart. J Cardiovasc Electrophysiol 14, 739–49.

    PubMed  Google Scholar 

  • Taggart, P. (1996) Mechano-electric feedback in the human heart. Cardiovasc Res 32, 38–43.

    Google Scholar 

  • Taggart P and Lab M (2008) Cardiac mechano-electric feedback and electrical restitution in humans. Prog Biophys Mol Biol 97, 452–60.

    PubMed  Google Scholar 

  • Taggart P, Sutton P, Lab M, Runnalls M, O‘Brien W and Treasure T (1992) Effect of abrupt changes in ventricular loading on repolarization induced by transient aortic occlusion in humans. Am J Physiol 263, H816–23.

    CAS  PubMed  Google Scholar 

  • Taggart P and Sutton PM (1999) Cardiac mechano-electric feedback in man: clinical relevance. Prog Biophys Mol Biol 71, 139–54.

    CAS  PubMed  Google Scholar 

  • Taggart P, Sutton PM, Opthof T, Coronel R, Trimlett R, Pugsley W and Kallis P (2001) Transmural repolarisation in the left ventricle in humans during normoxia and ischaemia. Cardiovasc Res 50, 454–62.

    CAS  PubMed  Google Scholar 

  • Takagi S, Miyazaki T, Moritani K, Miyoshi S, Furukawa Y, Ito S and Ogawa S (1999) Gadolinium suppresses stretch-induced increases in the differences in epicardial and endocardial monophasic action potential durations and ventricular arrhythmias in dogs. Jpn Circ J 63, 296–302.

    CAS  PubMed  Google Scholar 

  • Takahashi N, Imataka K, Seki A and Fujii J (1982) Left atrial enlargement in patients with paroxysmal atrial fibrillation. Jpn Heart J 23, 677–83.

    CAS  PubMed  Google Scholar 

  • Tan JH, Liu W and Saint DA (2002) Trek-like potassium channels in rat cardiac ventricular myocytes are activated by intracellular ATP. J Membr Biol 185, 201–7.

    CAS  PubMed  Google Scholar 

  • Tan JH, Liu W and Saint DA (2004) Differential expression of the mechanosensitive potassium channel TREK-1 in epicardial and endocardial myocytes in rat ventricle. Exp Physiol 89, 237–42.

    CAS  PubMed  Google Scholar 

  • Tanabe T, Deguchi Y, Handa S, Takahashi A and Fukushi H (2001) Longer longitudinal atrial dimension in patients with idiopathic paroxysmal atrial fibrillation: a possible cause of atrial fibrillation. Am Heart J 142, 669–78.

    CAS  PubMed  Google Scholar 

  • Tavi P, Han C and Weckstrom M (1998) Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes: role of increased troponin C affinity and stretch-activated ion channels. Circ Res 83, 1165–77.

    CAS  PubMed  Google Scholar 

  • Tendulkar AP and Harken AH (2006) Mechanics of the normal heart. J Card Surg 21, 615–20.

    PubMed  Google Scholar 

  • Terrenoire C, Lauritzen I, Lesage F, Romey G and Lazdunski M (2001) A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. Circ Res 89, 336–42.

    CAS  PubMed  Google Scholar 

  • Tse HF, Pelosi F, Oral H, Knight BP, Strickberger SA and Morady F (2001) Effects of simultaneous atrioventricular pacing on atrial refractoriness and atrial fibrillation inducibility: role of atrial mechanoelectrical feedback. J Cardiovasc Electrophysiol 12, 43–50.

    CAS  PubMed  Google Scholar 

  • Ulphani JS, Ng J, Aggarwal R, Cain JH, Gordon D, Yang E, Morris AR, Arora R, Goldberger JJ and Kadish AH (2007) Frequency gradients during two different forms of fibrillation in the canine atria. Heart Rhythm 4, 1315–23.

    PubMed  Google Scholar 

  • Valderrabano M (2007) Influence of anisotropic conduction properties in the propagation of the cardiac action potential. Prog Biophys Mol Biol 94, 144–68.

    CAS  PubMed  Google Scholar 

  • Van Wagoner DR (1993) Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 72, 973–83.

    PubMed  Google Scholar 

  • Vaziri SM, Larson MG, Benjamin EJ and Levy D (1994) Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation 89, 724–30.

    CAS  PubMed  Google Scholar 

  • Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, Wellens HJ and Lazzara R (2000) Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res 46, 376–92.

    CAS  PubMed  Google Scholar 

  • Wan, X., Bryant, S. M. and Hart, G. (2003) A topographical study of mechanical and electrical properties of single myocytes isolated from normal guinea-pig ventricular muscle. J Anat 202, 525–36.

    Google Scholar 

  • White E (2006) Mechanosensitive channels: therapeutic targets in the myocardium? Curr Pharm Des 12, 3645–63.

    CAS  PubMed  Google Scholar 

  • White E, Boyett MR and Orchard CH (1995) The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. J Physiol 482 (Pt 1), 93–107.

    CAS  PubMed  Google Scholar 

  • Wiegerinck RF, van Veen TA, Belterman CN, Schumacher CA, Noorman M, de Bakker JM and Coronel R (2008) Transmural dispersion of refractoriness and conduction velocity is associated with heterogeneously reduced connexin43 in a rabbit model of heart failure. Heart Rhythm 5, 1178–85.

    PubMed  Google Scholar 

  • Williams, I. A. and Allen, D. G. (2007) Intracellular calcium handling in ventricular myocytes from mdx mice. Am J Physiol Heart Circ Physiol 292, H846–55.

    Google Scholar 

  • Woo SH, Risius T and Morad M (2007) Modulation of local Ca2+ release sites by rapid fluid puffing in rat atrial myocytes. Cell Calcium 41, 397–403.

    CAS  PubMed  Google Scholar 

  • Wright M, Haissaguerre M, Knecht S, Matsuo S, O’Neill MD, Nault I, Lellouche N, Hocini M, Sacher F and Jais P (2008) State of the art: catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 19, 583–92.

    PubMed  Google Scholar 

  • Xian Tao L, Dyachenko V, Zuzarte M, Putzke C, Preisig-Muller R, Isenberg G and Daut J (2006) The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc Res 69, 86–97.

    Google Scholar 

  • Yan GX, Rials SJ, Wu Y, Liu T, Xu X, Marinchak RA and Kowey PR (2001) Ventricular hypertrophy amplifies transmural repolarization dispersion and induces early afterdepolarization. Am J Physiol Heart Circ Physiol 281, H1968–75.

    CAS  PubMed  Google Scholar 

  • Zabel M, Koller BS, Sachs F and Franz MR (1996a) Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc Res 32, 120–30.

    CAS  PubMed  Google Scholar 

  • Zabel M, Portnoy S and Franz MR (1996b) Effect of sustained load on dispersion of ventricular repolarization and conduction time in the isolated intact rabbit heart. J Cardiovasc Electrophysiol 7, 9–16.

    CAS  PubMed  Google Scholar 

  • Zeng T, Bett GC and Sachs F (2000) Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol 278, H548–57.

    CAS  PubMed  Google Scholar 

  • Zhang R, Iwasaki K, Zuckerman JH, Behbehani K, Crandall CG and Levine BD (2002) Mechanism of blood pressure and R-R variability: insights from ganglion blockade in humans. J Physiol 543, 337–48.

    CAS  PubMed  Google Scholar 

  • Zhao F, Dong L, Cheng L, Zeng Q and Su F (2007) Effects of acute mechanical stretch on the expression of mechanosensitive potassium channel TREK-1 in rat left ventricle. J Huazhong Univ Sci Technolog Med Sci 27, 385–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Saint .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Saint, D.A., Kelly, D., Mackenzie, L. (2010). The Contribution of MEF to Electrical Heterogeneity and Arrhythmogenesis. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2850-1_11

Download citation

Publish with us

Policies and ethics