Skip to main content

Wavefront Sensing and Analysis Using GPC

  • Chapter
Generalized Phase Contrast

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 146))

  • 997 Accesses

The need to perceive invisible phase perturbations can arise in a wide range of imaging systems, from phase microscopes that non-invasively image transparent biological samples in vivo to adaptive optical systems that measure and compensate for phase aberrations to improve quality in more general imaging situations. The common-path interferometer (CPI) is an appealing tool for extracting and quantifying phase perturbations. A CPI applies the same principle of phase-to-intensity transformation as amplitude-dividing interferometers (e.g. Michelson or Mach-Zender) but with the advantage of heightened robustness to mechanical vibrations and ambient air fluctuations owing to the internally synthesized reference wave. Having laid out the framework for the generalized phase contrast, a natural extension is to exploit GPC to accurately measure unknown phase, which we will explore in this chapter. We will apply GPC analysis to determine how filter parameters can be adapted in order to tailor a CPI for accurate wavefront sensing. This involves optimizing the fringe visibility and peak irradiance, as well as extending the linear phase-to-intensity mapping regime. GPC can prescribe the appropriate filter size to prevent scattered light at the input from propagating through the central filtering region and thereby prevent an erroneous interpretation of the output interference patterns. GPC can also be used to tailor the other filter parameters to extend the linear regime of the phase-to-intensity mapping. Moreover, one may take note of the actual filter parameters and apply the GPC model to extract accurate information. The generalized phase contrast framework allows us to properly describe the synthetic reference wave (SRW), which enables proper interpretation of the CPI output intensity over an arbitrarily wide phase range. Thus, one does not always have to minimize the SRW curvature since the GPC description of the SRW can be exploited to accurately determine the unknown phase input. Whether using GPC to expand the linear regime of the phase-to-intensity mapping, or to account for the SRW-based inhomogeneity, the method paves the way for shifting from qualitative to quantitative phase imaging that can be utilized both for microscopy and other generalized wavefront-sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. van den Bos, “Aberration and the Strehl ratio”, J. Opt. Soc. Am. A, 17, 356–358 (2000).

    Article  ADS  Google Scholar 

  2. G. D. Love, N. Andrews, P. M. Birch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, and A. Glinde-mann, “Binary adaptive optics: atmospheric wavefront correction with a half-wave phase shifter”, Appl. Opt. 34, 6058–6066 (1995); addenda 35, 347–350 (1996).

    Article  ADS  Google Scholar 

  3. H. B. Henning, “A new scheme for viewing phase contrast images”, Electro-optical Systems Design 6, 30–34 (1974).

    Google Scholar 

  4. G. O. Reynolds, J. B. Develis, G. B. Parrent, Jr., B. J. Thompson, The New Physical Optics Notebook: Tutorials in Fourier Optics, (SPIE Optical Engineering Press, New York 1989) Chap. 35.

    Book  Google Scholar 

  5. N. Lue, W. Choi, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan and M. S. Feld, “Quantitative phase imaging of live cells using fast Fourier phase microscopy,” Appl. Opt. 46, 1836–1842 (2007).

    Article  ADS  Google Scholar 

  6. H. Kadono, M. Ogusu and S. Toyooka, “Phase shifting common path interferometer using a liquid-crystal phase modulator,” Opt. Commun. 110, 391–400 (1994).

    Article  ADS  Google Scholar 

  7. T. Noda and S. Kawata, “Separation of phase and absorption images in phase-contrast microscopy,” J. Opt. Soc. Am. A 9, 924–931 (1992).

    Article  ADS  Google Scholar 

  8. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 21, 2503–2505 (2004).

    Article  ADS  Google Scholar 

  9. C. S. Guo, X. Liu, J. L. He and H. T. Wang, “Optimal annulus structures of optical vortices,” Opt. Express 12, 4625–4634 (2004).

    Article  ADS  Google Scholar 

  10. S. Bernet, A. Jesacher, S. Fü;rhapter, C. Maurer and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006).

    Article  ADS  Google Scholar 

  11. S. Wolfling, E. Lanzmann, M. Israeli, N. Ben-Yosef M and Y Arieli, “Spatial phase-shift interferometry — a wavefront analysis technique for three-dimensional topom-etry,” J. Opt. Soc. Am. A 22, 2498–2509 (2005).

    Article  ADS  Google Scholar 

  12. G. Popescu, T. Ikeda, R. R. Dasari and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775–777 (2006).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

(2009). Wavefront Sensing and Analysis Using GPC. In: Generalized Phase Contrast. Springer Series in Optical Sciences, vol 146. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2839-6_5

Download citation

Publish with us

Policies and ethics