Skip to main content

“Nanoscience is 100 Years Old.” The Defensive Appropriation of the Nanotechnology Discourse within the Disciplinary Boundaries of Crystallography

  • Chapter
  • First Online:
  • 919 Accesses

Part of the book series: Sociology of the Sciences Yearbook ((SOSC,volume 27))

Abstract

While public representations of nanotechnology in the media, political agendas, and forecasts have garnered attention, the scientific community’s relationship to the so-called nanodiscourse has not yet been examined in depth. Questions, which social groups can be identified, who is taking part in this discourse, and who is excluded are still underrepresented. In order to establish this new field of research and innovation, scientists try to actively shape and appropriate the discourse on nanotechnology (Hård and Jamison 1998: 1–16).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This article is part of the research project at the Deutsches Museum “Knowledge-production and Innovation at the Nanoscale. Instruments, Images and Visions in the Practice of Nanotechnology” supported by the VolkswagenStiftung.

  2. 2.

    By discourse we mean those written and spoken ideas that structure the public opinion and open up new spaces of possibilities (Lösch 2004: 195).

  3. 3.

    We understand these nanoscientific practices as forms of transdisciplinarity in difference to interdisciplinary projects, where scientists and engineers from different backgrounds work together on the basis of their original disciplinary expertise and identity (Klein 1990: 66; Gibbons et al. 1994: 168; Klein 2001; Schummer 2004: 11; Russel et al. 2008: 461).

  4. 4.

    We conducted 15 interviews with members of the crystallographic section of the Ludwig-Maximilians-University Munich geosciences department.

  5. 5.

    Interview Prof. Heinz Jagodzinski, 8.12.06.

  6. 6.

    Interview Prof. Heinz Jagodzinski, 8.12.06.

  7. 7.

    Interview with Prof. Heinz Schulz, 16.2.07, head of the new German crystallographic association at that time; Deutsche Gesellschaft für Kristallographie, http://www.dgkristall2.de/, (23.09.08).

  8. 8.

    These data were obtained through a list of crystallographic chairs in Germany by the Union of German Crystallographers. We thank Fabian Ochsenfeld for this survey.

  9. 9.

    With the help of electron microscopes, Paufler and his team determined that these nanotubes are filled with “Zementit,” a mixture of iron and carbon, that explains the material’s special strength.

  10. 10.

    Interview, nanoscientist A.

  11. 11.

    The actual nanoscience laboratories are still located at the Institute of Crystallography.

  12. 12.

    Interview, nanoscientist A.

  13. 13.

    Television report of Bayerisches Fernsehen “Faszination Wissen – Das Nanoschnitzel. Vision und Wirklichkeit in der Nanotechnologie” (first aired 23.10.03).

  14. 14.

    The interview transcriptions have been translated from the original German. Interview, nanoscientist B.

  15. 15.

    Interview, nanoscientist B.

  16. 16.

    Interview, crystallographer A.

  17. 17.

    Interview, crystallographer B.

  18. 18.

    Interview, crystallographer B.

  19. 19.

    Interview, crystallographer C.

  20. 20.

    Interview crystallographer C.

  21. 21.

    Interview nanoscientist C.

  22. 22.

    Interview nanoscientist A.

  23. 23.

    Interview nanoscientist A.

  24. 24.

    Interview crystallographer B.

  25. 25.

    It is characteristic for the Munich research landscape that activities in the realm of NST are university-based. More than two-thirds of all publications in this field stem from the two major universities LMU and Technische Universität. Only a small part is published by the semiconductor industry, which has a strong tradition in Munich. We counted 1251 nonscientific publications from the Munich area for the period 1997–2006. The publications were identified by the term “nano” in the title or abstract. The data stem from a survey of publication activities based on the Science Citation Index.

  26. 26.

    1988 he already formulated the idea of a laboratory for research at the nanoscale (Nanostrukturlabor).

  27. 27.

    Interview, Kotthaus, 19.12.06.

  28. 28.

    For a good description of Binnigs’ attitude and habitus, see Chapter 3 of Mody 2004a.

  29. 29.

    Interview, Kotthaus, 19.12.06.

  30. 30.

    Interview Prof. Kotthaus, 19.12.06.

  31. 31.

    Interview Prof. Kotthaus, 19.12.06.

  32. 32.

    About CeNs: http://cens.de/About_CeNS.23.0.html (8.3.2007).

  33. 33.

    About CeNs: http://cens.de/About_CeNS.23.0.html (8.3.2007).

  34. 34.

    “The creative and unorthodox atmosphere within CeNS efficiently helped to create concepts for and incubate young nano-technological companies: the spin-off companies attocube systems, Advalytix, ibidi, Nanion Technologies, Nanoscape, Nanotools, Nanotemper and Neaspec currently employ about 120 mostly young scientists and technologists, working primarily on nano-biotechnological tasks.” http://cens.de/ (19.9.2008).

  35. 35.

    About CeNs: http://cens.de/About_CeNS.23.0.html (8.3.2007).

  36. 36.

    http://www.muenchner-wissenschaftstage.de/content/e5/e29/index_ger.html, (8.3.2007).

  37. 37.

    http://cens.de/CeNS_Annual_Reports.76.0.html, (8.3.2007).

  38. 38.

    Interview, Kotthaus 19.12.06; Nanosystems Initiative Munich (NIM): LMU Pressinformation 13.10.2006 Entscheidung im Excellenz-Wettbewerb LMU ist Spitzenuniversität; http://www.nano-initiative-munich.de/, (15.11.07).

References

  • Bögel, R. (2001), ‘Kleine Welten, grosse Möglichkeiten. Nanotechnologie drängt in die Wirtschaft, erste Firmengründungen in München’, Süddeutsche Zeitung (April 11): 50.

    Google Scholar 

  • Bowker, G.C. and Star, S.L. (1999), Sorting Things Out. Classification and Its Consequences, Cambridge, MA: MIT Press.

    Google Scholar 

  • Bührer, S., R Bierhals, T. Heinze, A. Hullmann, T. Studer, R. Erlinghagen, and C. Lang (2002), Die Kompetenzzentren der Nanotechnologie in der Frühphase der Bundesförderung. Endbericht, Karlsruhe.

    Google Scholar 

  • Burtscheid, C. (1999), ‘Forscher stossen in winzige Dimensionen vor. Center for NanoScience arbeitet fächerübergreifend’, Süddeutsche Zeitung (January 19): L2.

    Google Scholar 

  • Drexler, E. K. (1986), Engines of Creation: The Coming Era of Nanotechnology New York: Anchor Books.

    Google Scholar 

  • Ewald, P.P. (ed.) (1962), 50 Years of X-Ray Diffraction, Utrecht: Springer. http://www.iucr.org/iucr-top/publ/50YearsOfXrayDiffraction/index.html (accessed on November 15, 2007).

  • Fischer, K. F. (2001), ‘Bemerkungen zu Zukunfts-Chancen der Kristallographie in Deutschland’, Mitteilungen der Deutschen Gesellschaft für Kristallographie 22.

    Google Scholar 

  • Gibbons, M., C. Limoges, H. Nowotny, S. Schwartzman, P. Scott, and M. Trow (1994), The New Production of Knowledge, London: Sage.

    Google Scholar 

  • Gieryn, T. F. (1999), Cultural Boundaries of Science. Credibility on the Line, Chicago: The University of Chicago Press.

    Google Scholar 

  • Hahn, Th. (ed.) (1990), Memorandum. Kristallographie. Jetzige und zukünftige Aufgaben, http://www.xtal.rwth-aachen.de/Ww/memo.html (accessed on September 22, 2008).

  • Hård, M. and A. Jamison (1998), ‘Conceptual Framework. Technology Debates as Appropriation Processes’ in M. Hård and A. Jamison (eds.), The Intellectual Appropriation of Technology. Discourses on Modernity 1900–1939, Cambridge: MIT Press, 1–16.

    Google Scholar 

  • Heckl, W. (2000), ‘Zukunft müssen wir machen nicht vorhersagen’, c’t Magazin für Computer-technik 4: 94.

    Google Scholar 

  • Heckl, W. (2004), ‘Das Unsichtbare sichtbar machen – Nanowissenschaften als Schlüssel-technologie des 21. Jahrhunderts’, in C. Maar and H. Burda (eds.), Iconic Turn. Die neue Macht der Bilder, Köln: DuMont: 128–141.

    Google Scholar 

  • Heckl, W. (2005), ‘Molecular Self-Assembly and Nanomanipulation – Two Key Technologies in Nanoscience and Templating’, Advances Engineering Materials 10: 843–847.

    Google Scholar 

  • Hessler, M. (2007), ‘Architectural Structuralism and a New Mode of Knowledge Production’, in R. Heil et al. (eds.), Tensions and Convergences. Technological and Aesthetic Transformations of Society, Bielefeld: trancript: 185–198.

    Google Scholar 

  • Jagodzinski, H. (1965), Denkschrift zur Lage der Kristallographie im Auftrage der Deutschen Forschugnsgemeinschaft und in Zusammenarbeit mit zahlreichen Fachlgelehrten verfasst, Wiesbaden: Franz Steiner Verlag.

    Google Scholar 

  • Klein, J. T. (1990), Interdisciplitarity. History, Theory and Practice. Detroit: Wayne University Press.

    Google Scholar 

  • Klein, J. T. (2001), Transdisciplinarity. Joint Problem Solving among Science, Technology, and Society. An Effective Way for Managing Complexity, Basel: Birhäuser.

    Google Scholar 

  • Kurath, M. and S. Maasen (2006), ‘Disziplinäre Identitätsbildung neu gedacht: Toxikologie als Nanowissenschaft?’, in A. Nordmann, J. Schummer, and A. Schwarz (eds.), Nanotechnologien im Kontext: Philosophische, ethische und gesellschaftliche Perspektiven, Berlin: Akademische Verlagsgesellschaft: 397–418.

    Google Scholar 

  • Law, J. (1979), ‘The Development of Specialties in Science. The Case of X-ray Protein Crystallography’, Social Studies of Science 3: 275–303.

    Article  Google Scholar 

  • Lösch, A. (2004), ‘Nanomedicine and Space. Discursive Orders of Mediating Innovations’, in D. Baird, A. Nordmann, and J. Schummer (eds.), Discovering the Nanoscale, Amsterdam: IOS Press: 193–202.

    Google Scholar 

  • Mody, C. (2004a), Crafting the Tools of Knowledge. The Invention, Spread and Commercialization of Probe Microscopy, 1960–2000, PhD Thesis: Cornell University.

    Google Scholar 

  • Mody, C. (2004b), ‘How Probe Microscopists Became Nanotechnologists’, in D. Baird, A. Nordmann, and J. Schummer (eds.), Discovering the Nanoscale, Amsterdam: IOS Press: 119–133.

    Google Scholar 

  • Nordmann, A. (2006), ‘Denkmuster hinter der Nanotechnologie. Die Welt als Baukastensystem’, Politische Ökologie 101: 20–23.

    Google Scholar 

  • Norman, F. H. and K. Lonsdale (eds.) (1952), International Tables for X-Ray Crystallography, (since 1982: International Tables for Crystallography), vol. A-F, Birmingham: Kynoch Press.

    Google Scholar 

  • Paufler, P. and W. Depmeier (2003), ‘Berliner Erklärung’, Mitteilungen der Deutschen Gesellschaft für Kristallographie 25: 5–6.

    Google Scholar 

  • Reibold, M., P. Paufler, A.A. Levine, W. Kochmann, N. Pätzke and D.C. Meyer (2006), ‘Materials: Carbon Nanotubes in an Ancient Damascus Sabre’, Nature 444: 286.

    Article  Google Scholar 

  • Rubner, J. (1999), ‘Ist “Nano” mehr als eine Mode? Prof. Dr. Jörg Kotthaus, Sektion Physik der Universität München, über ein neues Zentrum für Nanowissenschaft’, Süddeutsche Zeitung (January 19): V2 10.

    Google Scholar 

  • Russel, A.W., F. Wickson and A.L. Carew (2008), ‘Transdisciplinarity. Context, Contradictions and Capacity’, Futures, 40: 460–472.

    Article  Google Scholar 

  • Schirrmacher, A. (2007), ‘Einsicht in die Materie. Konjunkturen und Formen von Atombildren’ in A. Gall (ed.), Konstruieren, Kommunizieren, Präsentieren. Bilder von Wissenschaft und Technik, Göttingen: Wallstein Verlag (=Deutsches Museum Abhandlungen und Berichte, Neue Folge Bd. 23) 109–145.

    Google Scholar 

  • Schulenburg, M. (2002), Kristallographie in Deutschland, Deutsche Gesellschaft für Kristallographie e.V.: Köln.

    Google Scholar 

  • Schummer, J. (2004), ‘Interdisciplinary Issues in Nanoscale Research’, in D. Baird, A. Nordmann, and J. Schummer (eds.), Discovering the Nanoscale, Amsterdam: IOS Press: 9–20.

    Google Scholar 

  • Star, S. L. and J. R. Griesemer (1989), ‘Institutional Ecology, “Translations” and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of Vertebrate Zoology 1907-39’, Social Studies of Science 3: 387–420.

    Article  Google Scholar 

  • Star, S. L. (2004), ‘Kooperation ohne Konsens in der Forschung. Die Dynamik der Schliessung in offenen Systemen’, in J. Strübing (ed.), Kooperation im Niemandsland. Neue Perspektiven auf Zusammenarbeit in Wissenschaft und Technik, Opladen: Leske+Budrich: 58–76.

    Google Scholar 

  • Stichweh, R. (1979), ‘Differenzierung der Wissenschaft’, Zeitschrift für Soziologe 8, Nr. 1: 82–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kehrt, C., Schüßler, P. (2009). “Nanoscience is 100 Years Old.” The Defensive Appropriation of the Nanotechnology Discourse within the Disciplinary Boundaries of Crystallography. In: Kaiser, M., Kurath, M., Maasen, S., Rehmann-Sutter, C. (eds) Governing Future Technologies. Sociology of the Sciences Yearbook, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2834-1_3

Download citation

Publish with us

Policies and ethics