Advertisement

Diseases of the Human Mitochondrial Oxidative Phosphorylation System

  • Julio MontoyaEmail author
  • Ester López-Gallardo
  • María Dolores Herrero-Martín
  • Íñigo Martínez-Romero
  • Aurora Gómez-Durán
  • David Pacheu
  • Magdalena Carreras
  • Carmen Díez-Sánchez
  • Manuel J. López-Pérez
  • Eduardo Ruiz-Pesini
Chapter
  • 1.3k Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 652)

Abstract

Mitochondrial diseases, or diseases of the oxidative phosphorylation system, consist of a group of disorders originated by a deficient synthesis of ATP. This system is composed of proteins codified in the two genetic systems of the cell, the nuclear and the mitochondrial genomes, and, therefore, the mode of inheritance could be either mendelian or maternal. The diseases can also appear sporadically. Due to the central role that mitochondria play in cellular physiology, these diseases are a social and health problem of great importance. They are considered rare diseases; however, together they constitute a large variety of genetic disorders.

It is also believed that mitochondria are involved, directly or indirectly, in many other human diseases, mainly in age-related diseases. This review will focus mainly on describing the special characteristics of the mitochondrial genetic system and the diseases caused by mitochondrial DNA mutations. We will also note the difficulties in studying these pathologies, and the possible involvement of the genetic variability of the mitochondrial genome in the development of these diseases.

Keywords:

Mitochondrial diseases Oxidative phosphorylation system Mitochondrial DNA Mitochondrial genetics Nuclear DNA 

Notes

Acknowledgements

This project was supported by grants from the Instituto de Salud Carlos III-FIS (PI07-0045 and PI05-0647) and the Diputación General de Aragón (Grupos Consolidados B33 and PM063-2007). CIBER de Enfermedades Raras (CIBERER) is an initiative of the ISCIII.

References

  1. 1.
    Anderson, S., Bankier, A. T., Barrell, B. G., de-Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, H. P., Smith, A. J. H., Stader, R. and Young, I. G. Sequence and organization of the human mitochondrial genome. Nature (1981) 290: 427–465.Google Scholar
  2. 2.
    Andrews, R. M., Kubacka, I., Chinnery, P. F., Lightowlers, R. N., Turnbull, D. M. and Howell, N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet (1999) 23: 147.CrossRefPubMedGoogle Scholar
  3. 3.
    Barel, O., Shorer, Z., Flusser, H., Ofir, R., Narkis, G., Finer, G., Shalev, H., Nasasra, A., Saada, A. and Birk, O. S. Mitochondrial complex III deficiency associated with a homozygous mutation in UQCRQ. Am J Hum Genet (2008) 82: 1211–1216.CrossRefPubMedGoogle Scholar
  4. 4.
    Bindoff, L. A., Howell, N., Poulton, J., Mccullough, D. A., Morten, K. J., Lightowlers, R. N., Turnbull, D. M. and Weber, K. Abnormal RNA processing associated with a novel transfer RNA mutation in mitochondrial DNA - a potential disease mechanism. J Biol Chem (1993) 268: 19559–19564.PubMedGoogle Scholar
  5. 5.
    Bourgerom, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Pequignot, E., Munnich, A. and Rotig, A. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet (1995) 11: 144–149.CrossRefGoogle Scholar
  6. 6.
    Bowmaker, M., Yang, M. Y., Yasukawa, T., Reyes, A., Jacobs, H. T., Huberman, J. A. and Holt, I. J. Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem (2003) 278: 50961–50969.CrossRefPubMedGoogle Scholar
  7. 7.
    Brown, M. D., Allen, J. C., Van Stavern, G. P., Newman, N. J. and Wallace, D. C. Clinical, genetic, and biochemical characterization of a Leber hereditary optic neuropathy family containing both the 11778 and 14484 primary mutations. Am J Med Genet (2001) 104: 331–338.PubMedGoogle Scholar
  8. 8.
    Bykhovskaya, Y., Mengesha, E., Wang, D., Yang, H., Estivill, X., Shohat, M. and Fischel-Ghodsian, N. Human mitochondrial transcription factor B1 as a modifier gene for hearing loss associated with the mitochondrial A1555G mutation. Mol Genet Metab (2004) 82: 27–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Chomyn, A., Mariottini, P., Cleeter, M. W. J., Ragan, C. I., Doolittle, R. F., Matsuno-Yagi, A., Hatefi, Y. and Attardi, G. Functional assignment of the products of the unidentified reading frames o human mitochondrial DNA. In: Achievements and Perspectives of Mitochondrial Research (Quagliarello, E., Slater, E. C., Plamieri, F., Saccone, C. and Kroon, A. M. Amsterdam, eds). Volume II Elsevier Sciences. 1985, 259–275.Google Scholar
  10. 10.
    Chomyn, A., Martinuzzi, A., Yoneda, M., Daga, A., Hurko, O., Johns, D., Lai, S. T., Nonaka, I., Angelini, C. and Attardi, G. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcritps. Proc Natl Acad Sci U S A (1992) 89: 4221–4225.CrossRefPubMedGoogle Scholar
  11. 11.
    Chomyn, A., Meola, G., Bresolin, N., Lai, S. T., Scarlato, G. and Attardi, G. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathty-patient mitochodria. Mol Cell Biol (1991) 11: 2236–2244.PubMedGoogle Scholar
  12. 12.
    Clayton, D. A. Replication of animal mitochondrial DNA. Cell (1982) 28: 693–705.CrossRefPubMedGoogle Scholar
  13. 13.
    DiMauro, S. and Bonilla, E. Mitochondrial encephalomyopathies. In: The molecular and Genetic Basis of neurological diseases (Rosenberg, R. N., Prusiner, S. B., DiMauro, S. and Barchi, R. L., eds). Boston, Butterworth-Heinemann: 1998, 201–235.Google Scholar
  14. 14.
    Dimauro, S. and Hirano, M. Mitochondrial encephalomyopathies: an update. Neuromuscul Disord (2005) 15: 276–286.CrossRefPubMedGoogle Scholar
  15. 15.
    DiMauro, S., Hirano, M. and Schon, E. A., Eds.. Mitochondrial Medicine. Abingdon, Informa Health Care: 2006.Google Scholar
  16. 16.
    Dimauro, S. and Schon, E. A. Mitochondrial disorders in the nervous system. Annu Rev Neurosci (2008) 31: 91–123.CrossRefPubMedGoogle Scholar
  17. 17.
    Evans, M. and Rees, A. Effects of HMG-CoA reductase inhibitors on skeletal muscle: are all statins the same? Drug Safety (2002) 25: 649–663.CrossRefPubMedGoogle Scholar
  18. 18.
    Guan, M. X., Enriquez, J. A., Fischel-Ghodsian, N., Puranam, R. S., Lin, C. P., Maw, M. A. and Attardi, G. The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol Cell Biol (1998) 18: 5868–5879.PubMedGoogle Scholar
  19. 19.
    Hao, H. L. and Moraes, C. T. Functional and molecular mitochondrial abnormalities associated with a C->T transition at position 3256 of the human mitochondrial genome – the effects of a pathogenic mitochondrial tRNA point mutation in organelle translation and RNA processing. J Biol Chem (1996) 271: 2347–2352.CrossRefPubMedGoogle Scholar
  20. 20.
    Herrero-Martin, M. D., Pineda, M., Briones, P., Lopez-Gallardo, E., Carreras, M., Benac, M., Angel Idoate, M., Vilaseca, M. A., Artuch, R., Lopez-Perez, M. J., Ruiz-Pesini, E. and Montoya, J. A new pathologic mitochondrial DNA mutation in the cytochrome oxidase subunit I (MT-CO1). Hum Mutat (2008) 29: E103–E111.CrossRefGoogle Scholar
  21. 21.
    Hess, J. F., Parisi, M. A., Bennett, J. L. and Clayton, D. A. Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature (1991) 351: 236–239.CrossRefPubMedGoogle Scholar
  22. 22.
    Holt, I. J., Harding, A. E. and Morgan-Hughes, J. A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature (1988) 331: 717–719.CrossRefPubMedGoogle Scholar
  23. 23.
    Kasamatsu, H., Robberson, D. L. and Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc Natl Acad Sci U S A (1971) 68: 2252–2257.CrossRefPubMedGoogle Scholar
  24. 24.
    King, M. P. and Attardi, G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science (1989) 246: 500–503.CrossRefPubMedGoogle Scholar
  25. 25.
    King, M. P., Koga, Y., Davidson, M. and Schon, E. A. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the transfer RNA(Leu)(UUR) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol (1992) 12: 480–490.PubMedGoogle Scholar
  26. 26.
    Koga, Y., Davidson, M., Schon, E. A. and King, M. P. Fine mapping of mitochondrial RNAs derived from the mtDNA region containing a point mutation associated with MELAS. Nucleic Acids Res (1993) 21: 657–662.CrossRefPubMedGoogle Scholar
  27. 27.
    Kruse, B., Narasimhan, N. and Attardi, G. Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell (1989) 58: 391–397.CrossRefPubMedGoogle Scholar
  28. 28.
    Langston, J. W., Ballard, P., Tetrud, J. W. and Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science (1983) 219: 979–980.CrossRefPubMedGoogle Scholar
  29. 29.
    Lannuzel, A., Michel, P. P., Hoglinger, G. U., Champy, P., Jousset, A., Medja, F., Lombes, A., Darios, F., Gleye, C., Laurens, A., Hocquemiller, R., Hirsch, E. C. and Ruberg, M. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience (2003) 121: 287–296.CrossRefPubMedGoogle Scholar
  30. 30.
    Loeffen, J. L. C. M., Smeitink, J. A. M., Trijbels, J. M. F., Janssen, A. J. M., Triepels, R. H., Sengers, R. C. A. and van den Heuvel, L. P. Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum Mutat (2000) 15: 123–134.CrossRefPubMedGoogle Scholar
  31. 31.
    Martin, M., Cho, J., Cesare, A. J., Griffith, J. D. and Attardi, G. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell (2005) 123: 1227–1240.CrossRefPubMedGoogle Scholar
  32. 32.
    Massa, V., Fernandez-Vizarra, E., Alshahwan, S., Bakhsh, E., Goffrini, P., Ferrero, I., Mereghetti, P., D'Adamo, P., Gasparini, P. and Zeviani, M. Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome C oxidase. Am J Hum Genet (2008) 82: 1281–1289.CrossRefPubMedGoogle Scholar
  33. 33.
    McCulloch, V., Seidel-Rogol, B. L. and Shadel, G. S. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds s-adenosylmethionine. Mol Cell Biol (2002) 22: 1116–1125.CrossRefPubMedGoogle Scholar
  34. 34.
    Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. and Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science (1999) 286: 774–779.CrossRefPubMedGoogle Scholar
  35. 35.
    Miller, C., Saada, A., Shaul, N., Shabtai, N., Ben-Shalom, E., Shaag, A., Hershkovitz, E. and Elpeleg, O. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol (2004) 56: 734–738.CrossRefPubMedGoogle Scholar
  36. 36.
    Montoya, J., Christianson, T., Levens, D., Rabinowitz, M. and Attardi, G. Identification of initiation sites for heavy strand and light strand transcription in human mitochondrial DNA. Proc Natl Acad Sci U S A (1982) 79: 7195–7199.CrossRefPubMedGoogle Scholar
  37. 37.
    Montoya, J., Gaines, G. L. and Attardi, G. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell (1983) 34: 151–159.CrossRefPubMedGoogle Scholar
  38. 38.
    Montoya, J., Lopez-Gallardo, E., Diez-Sanchez, C., Lopez-Perez, M. J. and Ruiz-Pesini, E. 20 years of human mtDNA pathologic point mutations: Carefully reading the pathogenicity criteria. Bba Bioenergetics (2009) 1787: 476–483.Google Scholar
  39. 39.
    Montoya, J., Lopez-Perez, M. J. and Ruiz-Pesini, E. Mitochondrial DNA transcription and diseases: past, present and future. Biochim Biophys Acta (2006) 1757: 1179–1189.CrossRefPubMedGoogle Scholar
  40. 40.
    Montoya, J., Ojala, D. and Attardi, G. Distinctive features of the 5`-terminal sequences of the human mitochondrial mRNAs. Nature (1981) 290: 465–470.CrossRefPubMedGoogle Scholar
  41. 41.
    Nam, S. C. and Kang, C. DNA light-strand preferential recognition of human mitochondria transcription termination factor mTERF. J Biochem Mol Biol (2005) 38: 690–694.PubMedGoogle Scholar
  42. 42.
    Ojala, D., Merkel, C., Gelfand, R. and Attardi, G. The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell (1980) 22: 393–403.CrossRefPubMedGoogle Scholar
  43. 43.
    Ojala, D., Montoya, J. and Attardi, G. The putative mRNA per subunit II of human cytochrome c starts directly at the translation initiation codon. Nature (1980) 287: 79–82.CrossRefPubMedGoogle Scholar
  44. 44.
    Ojala, D., Montoya, J. and Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature (1981) 290: 470–474.CrossRefPubMedGoogle Scholar
  45. 45.
    Rife, J. P. and Moore, P. B. The structure of a methylated tetraloop in 16S ribosomal RNA. Structure (1998) 6: 747–756.CrossRefPubMedGoogle Scholar
  46. 46.
    Robberson, D. L., Kasamatsu, H. and Vinograd, J. Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc Natl Acad Sci U S A (1972) 69: 713–741.Google Scholar
  47. 47.
    Ruiz-Pesini, E., Lopez-Gallardo, E., Dahmani, Y., Herrero, M. D., Solano, A., Diez-Sanchez, C., Lopez-Perez, M. and Montoya, J. Diseases of the human mitochondrial oxidative phosphorylation system. Rev Neurol (2006) 43: 416–424.PubMedGoogle Scholar
  48. 48.
    SeidelRogol, B. L., McCulloch, V. and Shadel, G. S. Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet (2003) 33: 23–24.CrossRefGoogle Scholar
  49. 49.
    Skladal, D., Halliday, J. and R., T. D. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain: J Neurol (2003) 126: 1905–1912.Google Scholar
  50. 50.
    Smeitink, J. A., Elpeleg, O., Antonicka, H., Diepstra, H., Saada, A., Smits, P., Sasarman, F., Vriend, G., Jacob-Hirsch, J., Shaag, A., Rechavi, G., Welling, B., Horst, J., Rodenburg, R. J., van den Heuvel, B. and Shoubridge, E. A. Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am J Hum Genet (2006) 79: 869–877.CrossRefPubMedGoogle Scholar
  51. 51.
    Sutovsky, P., Neuber, E. and Schatten, G. Ubiquitin-dependent sperm quality control mechanism recognizes spermatozoa with DNA defects as revealed by dual ubiquitin-TUNEL assay. Mol Reprod Dev (2002) 61: 406–413.CrossRefPubMedGoogle Scholar
  52. 52.
    Takaku, H., Minagawa, A., Takagi, M. and Nashimoto, M. A candidate prostate cancer susceptibility gene encodes tRNA 3' processing endoribonuclease. Nucleic Acids Res (2003) 31: 2272–2278.CrossRefPubMedGoogle Scholar
  53. 53.
    Temperley, R. J., Seneca, S. H., Tonska, K., Bartnik, E., Bindoff, L. A., Lightowlers, R. N. and Chrzanowska-Lightowlers, Z. M. Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. Hum Mol Genet (2003) 12: 2341–2348.CrossRefPubMedGoogle Scholar
  54. 54.
    Tiranti, V., Savoia, A., Forti, F., DApolito, M. F., Centra, M., Racchi, M. and Zeviani, M. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the expressed sequence tags database. Hum Mol Genet (1997) 6: 615–625.CrossRefPubMedGoogle Scholar
  55. 55.
    Toompuu, M., Levinger, L. L., Nadal, A., Gomez, J. and Jacobs, H. T. The 7472insC mtDNA mutation impairs 5' and 3' processing of tRNA(Ser(UCN)). Biochem Biophys Res Commun (2004) 322: 803–813.CrossRefPubMedGoogle Scholar
  56. 56.
    Valente, L., Tiranti, V., Marsano, R. M., Malfatti, E., Fernandez-Vizarra, E., Donnini, C., Mereghetti, P., De Gioia, L., Burlina, A., Castellan, C., Comi, G. P., Savasta, S., Ferrero, I. and Zeviani, M. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet (2007) 80: 44–58.CrossRefPubMedGoogle Scholar
  57. 57.
    Wallace, D. C., Ruiz-Pesini, E. and Mishmar, D. mtDNA variation, climatic adaptation, degenerative diseases, and longevity. Cold Spring Harb Symp Quant Biol (2003) 68: 479–486.CrossRefPubMedGoogle Scholar
  58. 58.
    Wallace, D. C., Singh, G., Lott, M. T., Hodge, J. A., Schurr, T. G., Lezza, A. M. S., II, L. J. E. and Nikoskelainen, E. K. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science (1988) 242: 1427–1430.Google Scholar
  59. 59.
    Yan, H., Zareen, N. and Levinger, L. Naturally occurring mutations in human mitochondrial pre-tRNASer(UCN) can affect the tRNase Z cleavage site, processing kinetics and substrate secondary structure. J Biol Chem (2006) 281: 3926–3935.CrossRefPubMedGoogle Scholar
  60. 60.
    Yasukawa, T., Yang, M. Y., Jacobs, H. T. and Holt, I. J. A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol Cell (2005) 18: 651–662.CrossRefPubMedGoogle Scholar
  61. 61.
    Zeviani, M., Moraes, C. T., DiMauro, S., Nakase, H., Bonilla, E., Schon, E. and Rowland, L. P. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology (1988) 38: 1339–1346.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Julio Montoya
    • 1
    Email author
  • Ester López-Gallardo
    • 2
  • María Dolores Herrero-Martín
    • 3
  • Íñigo Martínez-Romero
    • 3
  • Aurora Gómez-Durán
    • 3
  • David Pacheu
    • 3
  • Magdalena Carreras
    • 3
  • Carmen Díez-Sánchez
    • 3
  • Manuel J. López-Pérez
    • 3
  • Eduardo Ruiz-Pesini
    • 3
  1. 1.Departamento de Bioquímica y Biología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
  2. 2.Services of Neurology, Clinical Neurophysiology and RadiologyUniversity Hospital “Marqués de Valdecilla”, University of Cantabria, CIBERNED and IFIMAVSantanderSpain
  3. 3.CIBER de Enfermedades Raras (CIBERER), ISCIII and Departamento de BioquímicaBiología Molecular y Celular, Universidad de ZaragozaZaragozaSpain

Personalised recommendations