Advertisement

Genetics and Pathogenesis of Distal Muscular Dystrophies

  • Bjarne UddEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 652)

Abstract

Distal myopathies are distal muscular dystrophies because they are genetic disorders with progressive loss of muscle tissue. The true distal dystrophies not only show a distal onset; they also remain more distal than proximal throughout the course of the disease. Currently almost 20 different entities of distal muscular dystrophies have been genetically determined, compared to just five entities delineated on clinical grounds in the 1980s. Half of the genes underlying these disorders have been associated with distal phenotypes only, whereas the other genes can manifest also with other than distal phenotypes such as proximal, scapuloperoneal or generalized phenotypes. Interestingly, most of the genes causing distal muscular dystrophies code for protein components of the sarcomere, in contrast to the proximal dystrophies in which most of the genes cause defects in sarcolemmal proteins. The reason for why some gene defects predominantly affect distal muscles is not well understood. The fact that the majority of these defects are due to structural and functional components of the sarcomere is intriguing but so far it does not provide further clues for understanding or for therapeutic approaches. The highly selective involvement of muscles in many of the distal dystrophies is even less well understood.

Keywords:

Distal myopathy Distal muscular dystrophy Molecular genetics Molecular pathogenesis 

References

  1. 1.
    Liu J, Aoki M, Illa I, et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998;20:31–36.CrossRefPubMedGoogle Scholar
  2. 2.
    Eisenberg I, Avidan N, Potikha T, et al. The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 2001;29:83–87.CrossRefPubMedGoogle Scholar
  3. 3.
    Hackman P, Vihola A, Haravuori H, et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 2002;71:492–500.CrossRefPubMedGoogle Scholar
  4. 4.
    Meredith C, Herrmann R, Parry C, et al. Mutations in the slow skeletal muscle fiber myosin heavy chain gene (MYH7) cause Laing early-onset distal myopathy (MPD1). Am J Hum Genet. 2004;75:703–708.CrossRefPubMedGoogle Scholar
  5. 5.
    Selcen D, Ohno K, Engel AG. Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. Brain 2004;127:439–451.CrossRefPubMedGoogle Scholar
  6. 6.
    Sjöberg G, Saavedra-Matiz C, Rosen D, et al. A missense mutation in the desmin rod domain is associated with autosomal dominant distal myopathy, and exerts a dominant negative effect on filament formation. Hum Mol Genet 1999;8:2191–2198.CrossRefPubMedGoogle Scholar
  7. 7.
    Vicart P, Caron A, Guicheney P, et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 1998;20:92–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Selcen D, Engel AG. Mutations in myotilin cause myofibrillar myopathy. Neurology 2004;62:1363–1371.PubMedGoogle Scholar
  9. 9.
    Griggs R, Vihola A, Hackman P, et al. Zaspopathy in a large classic late onset distal myopathy family. Brain 2007;130:1477–1484.Google Scholar
  10. 10.
    Nishino I, Noguchi S, Murayama K, et al. Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology 2002;59:1689–1693.PubMedGoogle Scholar
  11. 11.
    Ahlberg G, Tell D, Borg K, et al. Genetic linkage of Welander distal myopathy to chromosome 2p13. Ann Neurol 1999;46:399–404.CrossRefPubMedGoogle Scholar
  12. 12.
    Udd B, Vihola A, Sarparanta J, et al. Titinopathies and extension of the M-line mutation phenotype beyond distal myopathy and LGMD2J. Neurology 2005;64:636–642.PubMedGoogle Scholar
  13. 13.
    de Seze J, Udd B, Haravuori H, et al. The first European tibial muscular dystrophy family outside the Finnish population. Neurology 1998;51:1746–1748.PubMedGoogle Scholar
  14. 14.
    Van den Bergh P, Bouquiaux O, Verellen C, Marchand S, Richard I, Hackman P, Udd B. Tibial muscular dystrophy in a Belgian family. Annal Neurol 2003;54:248–251.CrossRefPubMedGoogle Scholar
  15. 14b.
    Hackman P, Marchand S, Sarparanta J, Vihola A, Pénisson-Besnier I, Eymard B, Pardal-Fernández J, Hammouda E, Richard I, Illa I and Udd B. Truncating mutations in C-terminal titin may cause more severe tibial muscular dystrophy (TMD). Neuromusc Disord 2008;18:922–8.Google Scholar
  16. 15.
    Haravuori H, Vihola A, Straub V, et al. Secondary calpain3 deficiency in 2q linked muscular dystrophy – titin is the candidate gene. Neurology 2001;56:869–877.PubMedGoogle Scholar
  17. 16.
    Richard I, Broux O, Allamand V, et al. Mutations in the proteolytic enzyme calpain3 cause limb-girdle muscular dystrophy type 2A. Cell 1995;81:27–40.CrossRefPubMedGoogle Scholar
  18. 17.
    Markesbery WR, Griggs RC, Leach RP, et al. Late onset hereditary distal –myopathy. Neurology 1974;23:127.Google Scholar
  19. 18.
    Selcen D, Engel AG. Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann Neurol 2005;57:269–276.CrossRefPubMedGoogle Scholar
  20. 19.
    Olive M, Goldfarb LG, Shatunov A, et al. Myotilinopathy: refining the clinical and myopathological phenotype. Brain 2005;128:2315–2326.CrossRefPubMedGoogle Scholar
  21. 20.
    Penisson-Besnier I, Dumez C, Chateau D, et al. Autosomal dominant late adult onset distal leg myopathy. Neuromuscul Disord 1998;8:459–466.CrossRefPubMedGoogle Scholar
  22. 21.
    Penisson-Besnier I, Talvinen K, Dumez C, et al. Myotilinopathy in a family with late onset myopathy. Neuromuscul Disord 2006;16:427–431.CrossRefPubMedGoogle Scholar
  23. 22.
    Foroud T, Pankratz N, Batchman AP, et al. A mutation in myotilin causes spheroid body myopathy. Neurology 2005;65:1936–1940.CrossRefPubMedGoogle Scholar
  24. 23.
    Milhorat AT, Wolff HG. Studies in diseases of muscle: XIII. Progressive muscular dystrophy of atrophic distal type: Report on a family: Report of autopsy. Arch Neurol Psychiatry 1943;49:655.Google Scholar
  25. 24.
    Walter M, Reichlich P, Hübner A, et al. Identification of a desmin gene mutation in scapuloperoneal syndrome type Kaeser. Neuromusc Disord 2006;16:708–709.CrossRefGoogle Scholar
  26. 25.
    Sugawara M, Kato K, Komatsu M, et al. A novel de novo mutation in the desmin gene causes desmin myopathy with toxic aggregates. Neurology 2000;55:986–990.PubMedGoogle Scholar
  27. 26.
    Vorgerd M, van der Ven PF, Bruchertseifer V, et al. A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am J Hum Genet 2005;77:297–304.CrossRefPubMedGoogle Scholar
  28. 27.
    Tomimitsu H, Ishikawa K, Shimizu J, et al. Distal myopathy with rimmed vacuoles: novel mutations in the GNE gene. Neurology 2002;59:451–454.PubMedGoogle Scholar
  29. 28.
    Kayashima T, Matsuo H, Satoh A, et al. Nonaka myopathy is caused by mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase gene (GNE). J Hum Genet 2002; 47:77–79.CrossRefPubMedGoogle Scholar
  30. 29.
    Nishino I, Malicdan MC, Murayama K, et al. Molecular pathomechanism of distal myopathy with rimmed vacuoles. Acta Myol 2005; 24:80–83.PubMedGoogle Scholar
  31. 30.
    Malicdan MC, Noguchi S, Hayashi YK, et al. Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med 2009;15:690–5.CrossRefPubMedGoogle Scholar
  32. 31.
    Illa I, Serrano-Munuera C, Gallardo E, et al. Distal anterior compartment myopathy: A dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol 2001; 49:130–134.CrossRefPubMedGoogle Scholar
  33. 32.
    Linssen W, de Visser M, Notermans N, et al. Genetic heterogeneity in Miyoshi type distal muscular dystrophy. Neuromusc Disord 1998;8:317–320.CrossRefPubMedGoogle Scholar
  34. 33.
    Jaiswal JK, Marlow G, Summerill G, et al. Patients with a non-dysferlin Miyoshi myopathy have a novel membrane repair defect. Traffic 2006 [Epub ahead of print].Google Scholar
  35. 34.
    Anderson L, Davison K, Moss J, et al. Dysferlin is a plasma membrane protein and is expressed early in human development. Hum Mol Genet 1999; 8:855–861.CrossRefPubMedGoogle Scholar
  36. 35.
    Matsuda C, Hayashi Y, Ogawa M, et al. The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum Mol Genet 2001; 10:1761–1766.CrossRefPubMedGoogle Scholar
  37. 36.
    Tateyama M, Aoki M, Nishino I, et al. Mutation in the caveolin-3 gene causes a peculiar form of distal myopathy. Neurology 2002; 58:323–325.PubMedGoogle Scholar
  38. 37.
    Selcen D, Stilling G, Engel A. The earliest pathologic alterations in dysferlinopathy. Neurology 2001; 56:1472–1481.PubMedGoogle Scholar
  39. 38.
    Bansal D, Campbell KP. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends Cell Biol 2004; 14:206–213.CrossRefPubMedGoogle Scholar
  40. 39.
    Laing N, Laing B, Meredith C, et al. Autosomal dominant distal myopathy: Linkage to chromosome 14. Am J Hum Genet 1995; 56:422–427.PubMedGoogle Scholar
  41. 40.
    Voit T, Kutz P, Leube B, et al. Autosomal dominant distal myopathy: Further evidence of a chromosome 14 locus. Neuromuscul Disord 2001;11:11–19.CrossRefPubMedGoogle Scholar
  42. 41.
    Zimprich F, Djamshidian A, Hainfellner J, et al. An autosomal dominant early adult onset distal muscular dystrophy. Muscle Nerve 2000;23:1876–1879.CrossRefPubMedGoogle Scholar
  43. 42.
    Lamont P, Udd B, Mastaglia F, et al. Laing early-onset distal myopathy – slow myosin defect with variable abnormalities on muscle biopsy. J Neurol Neurosurg Psychiatry 2006; 77:208–215.CrossRefPubMedGoogle Scholar
  44. 43.
    Wallgren-Pettersson C, Pelin K, Nowak KJ, et al. Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin. Neuromuscul Disord 2004; 14:461–470.CrossRefPubMedGoogle Scholar
  45. 44.
    Wallgren-Pettersson C, Lehtokari V-L, Kalimo H, et al. Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain 2007; 130:1465–1476.CrossRefPubMedGoogle Scholar
  46. 45.
    Feit H, Silbergleit A, Schneider L, et al. Vocal cord and pharyngeal weakness with autosomal dominant distal myopathy: clinical description and gene localization to 5q31. Am J Hum Genet 1998; 63:1732–1742.CrossRefPubMedGoogle Scholar
  47. 45b.
    Senderek J, Garvey SM, Krieger M, et al. Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. Am J Hum Genet 2009;84:511–8.Google Scholar
  48. 46.
    Kimonis VE, Mehta SG, Fulchiero EC, et al. Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am J Med Genet A 2008 15;146:745–757.Google Scholar
  49. 47.
    Servidei S, Capon F, Spinazzola M, et al. A distinctive autosomal dominant vacuolar neuromyopathy linked to 19p13. Neurology 1999; 53:830–837.PubMedGoogle Scholar
  50. 48.
    Di Blasi C, Moghadaszadeh B, Ciano C, et al. Abnormal lysosomal and ubiquitin-proteasome pathways in 19p13.3 distal myopathy. Ann Neurol 2004;56:133–138.CrossRefPubMedGoogle Scholar
  51. 49.
    Williams DR, Reardon K, Roberts L, et al. A new dominant distal myopathy affecting posterior leg and anterior upper limb muscles. Neurology 2005; 64:1245–54.PubMedGoogle Scholar
  52. 50.
    Mahjneh I, Haravuori H, Paetau A, et al. A distinct phenotype of distal myopathy in a large Finnish family. Neurology 2003; 61:87–92.PubMedGoogle Scholar
  53. 51.
    Haravuori H, Siitonen A, Mahjneh I, et al. Linkage to two separate loci in a family with a novel distal myopathy phenotype (MPD3). Neuromusc Disord 2004; 14:183–187.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Neuromuscular Centre, Tampere University Hospital and University of Tampere, and Folkhalsan Institute of Genetics, University of HelsinkiHelsinkiFinland

Personalised recommendations