Advertisement

Spinal Muscular Atrophy During Human Development: Where Are the Early Pathogenic Findings?

  • Eduardo TizzanoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 652)

Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive disorder that affects motor neurons. It is caused by mutations in the survival motor neuron gene 1 (SMN1). The SMN2 gene, which is the highly homologous SMN1 copy that is present in all patients, is unable to prevent the disease. SMA patients can be classified into four groups based on age at onset and acquired milestones (type I or severe acute disease, with onset before 6 months; type II, before 18 months; type III, after 18 months and type IV, in adult life). The human developmental period is believed to play an essential role in SMA pathogenesis. However, the neuropathologic study of SMA comes largely from postnatal necropsy samples, which describe the end-stage of the disease. With the exception of severe congenital SMA (or Type 0 SMA), type I patients tend to present a short but variable presymptomatic period after birth. Our main interest lies in studying SMA during human development so as to gain insight into the mechanism of the disease in the prenatal – presymptomatic stage. In fetuses of 12–15 weeks’ gestational age we systematically studied histology, cell death and gene expression in spinal cord and muscle, the key tissues involved in the disease. Furthermore, ultrasound parameters were investigated at these stages. These studies may help to delineate an early intervention in SMA, in particular during the potential therapeutic window.

Keywords:

Spinal muscular atrophy Prenatal diagnosis Histology Apoptosis Gene and protein expression Fetal movements 

Notes

Acknowledgements

I wish to thank the consenting parents and SMA families who made this study possible and Rebeca Martínez-Hernández, Carolina Soler-Botija, Laura Alias, Sara Bernal, Eva Also, María Jesús Barceló, Juan Parra, Ivón Cuscó, Carolyn Newey and Montserrat Baiget for their invaluable collaboration.

References

  1. 1.
    Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 2004;12:59–65.CrossRefPubMedGoogle Scholar
  2. 2.
    Angelozzi C, Borgo F, Tiziano FD, Martella A, Neri G, Brahe C. Salbutamol increases SMN mRNA and protein levels in spinal muscular atrophy cells. J Med Genet 2008;45:29–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Battaglia G, Princivalle A, Forti F, Lizier C, Zeviani M. Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system. Hum Mol Genet 1997;6:1961–1971.CrossRefPubMedGoogle Scholar
  4. 4.
    Brahe C, Vitali T, Tiziano FD, Angelozzi C, Pinto AM, Borgo F, et al. Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur J Hum Genet 2005;13:256–259.CrossRefPubMedGoogle Scholar
  5. 5.
    Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 2003;19:2481–2489.CrossRefGoogle Scholar
  6. 6.
    Brichta L, Holker I, Haug K, Klockgether T, Wirth B. In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate. Ann Neurol 2006;59:970–975.CrossRefPubMedGoogle Scholar
  7. 7.
    Burghes A. When is a deletion not a deletion? When it is converted. Am J Hum Genet 1997;61:9.CrossRefPubMedGoogle Scholar
  8. 8.
    Bürglen L, Lefebvre S, Clermont O, Burlet P, Viollet L, Cruaud C, Munnich A, Melki J. Structure and organization of the human survival motor neurone (SMN) gene. Genomics 1996;32:479–482.CrossRefPubMedGoogle Scholar
  9. 9.
    Burlet P, Huber C, Bertrandy S, et al. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet 1998;7:1927–1933.CrossRefPubMedGoogle Scholar
  10. 10.
    Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, et al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 1997;6:1205–1214.CrossRefPubMedGoogle Scholar
  11. 11.
    Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Ronchi D, Saladino F, Bordoni A, Fortunato F, Del Bo R, Papadimitriou D, Locatelli F, Menozzi G, Strazzer S, Bresolin N, Comi GP. Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 2008 Sep 2; [Epub ahead of print].Google Scholar
  12. 12.
    Crawford TO, Pardo CA. The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 1996;3:97–110.CrossRefPubMedGoogle Scholar
  13. 13.
    Cuscó I, Barceló MJ, Rojas-García R, Illa I, Gámez J, Cervera C, Pou A, Izquierdo G, Baiget M, Tizzano EF. SMN2 copy number predicts acute or chronic spinal muscular atrophy but does not account for intrafamilial variability in siblings. J Neurol 2006;253:21–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Cusin V, Clermont O, Gérard B, Chantereau D, Elion J. Prevalence of SMN1 deletion and duplication in carrier and normal populations: implication for genetic counselling. J Med Genet 2003;40:e39.CrossRefPubMedGoogle Scholar
  15. 15.
    Fidzianska A, Hausmanowa-Petrusewicz I. Morphology of the lower motor neuron and muscle. In: Gamstorp I, Sarnat HB editors. Progressive Spinal Muscular Atrophies. Raven Press, New York; 1984:55–89.Google Scholar
  16. 16.
    Fidzianska A, Goebel HH, Warlo I. Acute infantile spinal muscular atrophy. Muscle apoptosis as a proposed pathogenetic mechanism. Brain 1990;113 ( Pt 2):433–445.CrossRefPubMedGoogle Scholar
  17. 17.
    Fidzianska A, Rafalowska J. Motoneuron death in normal and spinal muscular atrophy-affected human fetuses. Acta Neuropathol 2002;104:363–368.PubMedGoogle Scholar
  18. 18.
    Francis JW, Sandrock AW, Bhide PG, Vonsattel JP, Brown RH Jr. Heterogeneity of subcellular localization and electrophoretic mobility of survival motor neuron (SMN) protein in mammalian neural cells and tissues. Proc Natl Acad Sci USA 1998;95:6492–6497.CrossRefPubMedGoogle Scholar
  19. 19.
    Frugier T, Tiziano FD, Cifuentes-Diaz C, Miniou P, Roblot N, Dierich A, et al. Nuclear targeting defect of SMN laking the C-terminus in a mouse model of spinal muscular atrophy. Hum Mol Genet 2000; 9:849–858.CrossRefPubMedGoogle Scholar
  20. 20.
    Grzeschik SM, Ganta M, Prior TW, Heavlin WD, Wang CH. Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells. Ann Neurol 2005;58:194–202.CrossRefPubMedGoogle Scholar
  21. 21.
    Hausmanowa-Petrusewicz I, Fidzianska A, Niebroj-Dobosz I, Strugalska MH. Is Kugelberg-Welander spinal muscular atrophy a fetal defect? Muscle Nerve 1980;3:389–402.CrossRefPubMedGoogle Scholar
  22. 22.
    Hsieh-Li HM, Chang JG, Jong YJ, et al. A mouse model for spinal muscular atrophy. Nat Genet 2000;24:66–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Holzgreve W, Curry CJ, Golbus MS, Callen PW, Filly RA, Smith JC. Investigation of nonimmune hydrops fetalis. Am J Obstet Gynecol 1984;150:805–812.PubMedGoogle Scholar
  24. 24.
    Kariya S, Park GH, Maeno-Hikichi Y, Leykekhman O, Lutz C, Arkovitz MS, Landmesser LT, Monani UR. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy Hum Mol Genet 2008;17:2552–2569.CrossRefPubMedGoogle Scholar
  25. 25.
    Kerr DA, Nery JP, Traystman RJ, Chau BN, Hardwick JM. Survival motor neuron protein modulates neuron-specific apoptosis. Proc Natl Acad Sci USA 2000;97:13312–13317.CrossRefPubMedGoogle Scholar
  26. 26.
    Kurjak A.,Andonotopo W, Stanojevic M, Milenkovic D, Azumendi G., Hafner T, Ujevic B. Longitudinal study of fetal behaviour by 4D ultrasound. Ultras Rev Obst Gynecol 2005; 5:259–275.CrossRefGoogle Scholar
  27. 27.
    Lefebvre S, Bürglen L, Reboullet S, Clermont O, Bulret P, Viollet L, et al. Identification and characterization of spinal muscular atrophy determining gene. Cell 1995; 80:155–165.CrossRefPubMedGoogle Scholar
  28. 28.
    Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 1997; 16:265–269.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu Q, Dreyfuss G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J 1996;15:3555–3565.PubMedGoogle Scholar
  30. 30.
    Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. PNAS USA 1999; 96:6307–6311.CrossRefPubMedGoogle Scholar
  31. 31.
    MacLeod MJ, Taylor JE, Lunt PW, Mathew CG, Robb SA. Prenatal onset spinal muscular atrophy. Eur J Paediatr Neurol 1999; 3:65–72.PubMedGoogle Scholar
  32. 32.
    McGovern VL, Gavrilina TO, Beattie CE, Burghes AH. Embryonic motor axon development in the severe SMA mouse. Hum Mol Genet 2008;17:2900–2909.CrossRefPubMedGoogle Scholar
  33. 33.
    Martínez-Hernández R, Soler-Botija C, Also E, Alias E, Casellas L, Gich I, Bernal S, Tizzano EF. The developmental pattern of myotubes in spinal muscular atrophy indicates prenatal delay of muscle maturation. J Neuropathol Exp Neurol 2009;68:474–481.CrossRefPubMedGoogle Scholar
  34. 34.
    Mercuri E, Bertini E, Messina S, Solari A, D’Amico A, Angelozzi C, Battini R, Berardinelli A, Boffi P, Bruno C, Cini C, Colitto F, Kinali M, Minetti C, Mongini T, Morandi L, Neri G, Orcesi S, Pane M, Pelliccioni M, Pini A, Tiziano FD, Villanova M, Vita G, Brahe C. Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurology 2007;68:51–55.CrossRefPubMedGoogle Scholar
  35. 35.
    Monani UR, Lorson CL, Parsons DW, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 1999; 8:1177–1183.CrossRefPubMedGoogle Scholar
  36. 36.
    Monani UR, Sendtner M, Coovert DD, Parsons DW, Andrassi C, Le TT, et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn-/- mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 2000; 9:333–339.CrossRefPubMedGoogle Scholar
  37. 37.
    Oppenheim R. Cell death during development of the nervous system Annu Rev Neurosci 1991; 14:453–501.Google Scholar
  38. 38.
    Oprea GE, Kröber S, McWhorter ML, Rossoll W, Müller S, Krawczak M, Bassell GJ, Beattie CE, Wirth B. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 2008; 320(5875):524–527.CrossRefPubMedGoogle Scholar
  39. 39.
    Pane M, Staccioli S, Messina S, D'Amico A, Pelliccioni M, Mazzone ES, Cuttini M, Alfieri P, Battini R, Main M, Muntoni F, Bertini E, Villanova M, Mercuri E. Daily salbutamol in young patients with SMA type II. Neuromuscul Disord 2008;18:536–540.CrossRefPubMedGoogle Scholar
  40. 40.
    Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet 1978; 15:409–413.CrossRefPubMedGoogle Scholar
  41. 41.
    Pellizoni L. Chaperoning ribonucleoprotein biogenesis in health and disease. EMBO Report 2007; 8:340–345.CrossRefGoogle Scholar
  42. 42.
    Rijhsinghani A, Yankowitz J, Howser D, Williamson R. Sonographic and maternal serum screening abnormalities in fetuses affected by spinal muscular atrophy. Prenat Diagn 1997; 17:166–169.CrossRefPubMedGoogle Scholar
  43. 43.
    Sandri M, Carraro U. Apoptosis of skeletal muscles during development and disease. Int J Biochem Cell Biol 1999; 31:1373–1390.CrossRefPubMedGoogle Scholar
  44. 44.
    Schrank B, Gotz R, Gunnersen JM, et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 1997; 94:9920–9925.CrossRefPubMedGoogle Scholar
  45. 45.
    Simic G, Seso-Simic D, Lucassen PL, Islam A, Krsnik Z, Cviko A, et al. Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease. J Neuropathol Exp Neurol 2000; 59:398–407.PubMedGoogle Scholar
  46. 46.
    Sohal GS. Sixth Annual Stuart Reiner Memorial Lecture. Embryonic development of nerve and muscle. Muscle Nerve 1995;18:2–14.Google Scholar
  47. 47.
    Stathas D, Kalfakis N, Kararizou E, Manta P. Spinal muscular atrophy: DNA fragmentation and immaturity of muscle fibers. Acta Histochem 2008;110:53–58.CrossRefPubMedGoogle Scholar
  48. 48.
    Soler-Botija C, Ferrer I, Gich I, Baiget M, Tizzano EF. Neuronal death is enhanced and begins during foetal development in type I spinal muscular atrophy spinal cord. Brain 2002; 125:1624–1634.CrossRefPubMedGoogle Scholar
  49. 49.
    Soler-Botija C, Cusco I, Lopez E, Clua A, Gich I, Baiget M, et al. Choline acetyltransferase expression does not identify early pathogenic events in fetal SMA spinal cord. Neuromuscul Disord 2005a; 15:253–258.CrossRefPubMedGoogle Scholar
  50. 50.
    Soler-Botija C, Cusco I, Caselles L, et al. Implication of fetal SMN2 expression in type I SMA pathogenesis: protection or pathological gain of function? J Neuropathol Exp Neurol 2005b; 64:215–223.PubMedGoogle Scholar
  51. 51.
    Sumner CJ, Huynh TN, Markowitz JA, Perhac JS, Hill B, Coovert DD, Schussler K, Chen X, Jarecki J, Burghes AH, Taylor JP, Fischbeck KH. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 2003;54:647–654.CrossRefPubMedGoogle Scholar
  52. 52.
    Sumner CJ. Therapeutics development for spinal muscular atrophy. NeuroRx. 2006; 3:235–245.CrossRefPubMedGoogle Scholar
  53. 53.
    Swoboda KJ, Scott CB, Reyna SP, Prior TW, LaSalle B, Sorenson SL, Wood J, Acsadi G, Crawford TO, Kissel JT, Krosschell KJ, D’Anjou G, Bromberg MB, Schroth MK, Chan GM, Elsheikh B, Simard LR. Phase II open label study of valproic acid in spinal muscular atrophy. PLoS One. 2009;4:e5268. Epub 2009 May 14.Google Scholar
  54. 54.
    Tews DS, Goebel HH. DNA fragmentation and BCL-2 expression in infantile spinal muscular atrophy. Neuromuscul Disord. 1996; 6:265–273.CrossRefPubMedGoogle Scholar
  55. 55.
    Tizzano EF, Cabot C, Baiget M. Cell-specific survival motor neuron gene expression during human development of the central nervous system: implications for the pathogenesis of spinal muscular atrophy. Am J Pathol 1998; 153:355–361.PubMedGoogle Scholar
  56. 56.
    Van Vugt JM, Tinnemans BW, Van Zalen-Sprock RM. Outcome and early childhood follow-up of chromosomally normal fetuses with increased nuchal translucency at 10-14 weeks' gestation. Ultrasound Obstet Gynecol 1998; 11:407–409.CrossRefPubMedGoogle Scholar
  57. 57.
    Wirth B, Brichta L, Schrank B, Lochmüller H, Blick S, Baasner A, Heller R. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet 2006;119:422–428.CrossRefPubMedGoogle Scholar
  58. 58.
    Wu D, Hersh LB. Choline acetyltransferase: celebrating its fiftieth year. J Neurochem 1994; 5:1653–1663.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Genetic and Research Institute Hospital de la Santa Creu i Sant Pau and CIBERERBarcelonaSpain

Personalised recommendations