Skip to main content

Mathematical Issues in Loop Quantum Cosmology

  • Conference paper
New Trends in Mathematical Physics
  • 1675 Accesses

Abstract

Focusing on mathematical aspects, this article gives a review of loop quantum cosmology as an application of background independent quantization techniques to cosmological models. Mathematical issues arise at two different levels. First, the kinematical basis of loop quantum cosmology is derived as an induced representation of loop quantum gravity. The discrete spatial geometry exhibited by quantum gravity as a consequence of the loop quantization is then realized also in cosmological models. Dynamical equations formulated in such models are difference rather than differential equations, whose analysis provides the second class of mathematical applications. Suitable solutions display typical features in quantum regimes, where they can resolve classical space-time singularities, but should also approach semiclassical behavior in classical regimes. Such solutions can be found using generating function or continued fraction techniques. Semiclassical behavior and corrections to the classical one are derived using effective equations which approximate partial difference equations by ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ashtekar, New Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587–1602 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Ashtekar and M. Bojowald, Quantum Geometry and the Schwarzschild Singularity. Class. Quantum Gravity 23, 391–411 (2006). gr-qc/0509075

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report. Class. Quantum Gravity 21, R53–R152 (2004). gr-qc/0404018

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. A. Ashtekar and T.A. Schilling, Geometrical Formulation of Quantum Mechanics. pp. 23–65. Springer, New York (1999). gr-qc/9706069

    Google Scholar 

  5. A. Ashtekar, M. Bojowald, and J. Lewandowski, Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233–268 (2003). gr-qc/0304074

    MathSciNet  Google Scholar 

  6. A. Ashtekar, T. Pawlowski, and P. Singh, Quantum nature of the big bang: Improved dynamics. Phys. Rev. D 74, 084003 (2006). gr-qc/0607039

    Article  ADS  MathSciNet  Google Scholar 

  7. J.F.G. Barbero, Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 51, 5507–5510 (1995). gr-qc/9410014

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Bojowald, Absence of a singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227–5230 (2001). gr-qc/0102069

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Bojowald, Isotropic loop quantum cosmology. Class. Quantum Gravity 19, 2717–2741 (2002). gr-qc/0202077

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. M. Bojowald, Homogeneous loop quantum cosmology. Class. Quantum Gravity 20, 2595–2615 (2003). gr-qc/0303073

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. M. Bojowald, Spherically symmetric quantum geometry: States and basic operators. Class. Quantum Gravity 21, 3733–3753 (2004). gr-qc/0407017

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. M. Bojowald, Non-singular black holes and degrees of freedom in quantum gravity. Phys. Rev. Lett. 95, 061301 (2005). gr-qc/0506128

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Bojowald, Loop quantum cosmology. Living Rev. Relativ. 11, 4 (2008). http://www.livingreviews.org/lrr-2008-4

    ADS  Google Scholar 

  14. M. Bojowald, Loop quantum cosmology and inhomogeneities. Gen. Relativ. Gravit. 38, 1771–1795 (2006). gr-qc/0609034

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. M. Bojowald, Quantum cosmology. In: Encyclopedia of Mathematical Physics, vol. 4, p. 153. Elsevier, London (2006). gr-qc/0603110

    Chapter  Google Scholar 

  16. M. Bojowald, Large scale effective theory for cosmological bounces. Phys. Rev. D 75, 081301(R) (2007)

    ADS  MathSciNet  Google Scholar 

  17. M. Bojowald, Dynamical coherent states and physical solutions of quantum cosmological bounces. Phys. Rev. D 75, 123512 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Bojowald, Singularities and quantum gravity. In: Proceedings of the XIIth Brazilian School on Cosmology and Gravitation. AIP Conf. Proc. 910, 294–333 (2007)

    Google Scholar 

  19. M. Bojowald and H.A. Kastrup, Symmetry reduction for quantized diffeomorphism invariant theories of connections. Class. Quantum Gravity 17, 3009–3043 (2000). hep-th/9907042

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. M. Bojowald and A. Rej, Asymptotic properties of difference equations for isotropic loop quantum cosmology. Class. Quantum Gravity 22, 3399–3420 (2005). gr-qc/0504100

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. M. Bojowald and A. Skirzewski, Effective equations of motion for quantum systems. Rev. Math. Phys. 18, 713–745 (2006). math-ph/0511043

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Bojowald and R. Swiderski, Spherically symmetric quantum geometry: Hamiltonian constraint. Class. Quantum Gravity 23, 2129–2154 (2006). gr-qc/0511108

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. M. Bojowald, G. Date, and K. Vandersloot, Homogeneous loop quantum cosmology: The role of the spin connection. Class. Quantum Gravity 21, 1253–1278 (2004). gr-qc/0311004

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. M. Bojowald, H.H. Hernández, and H.A. Morales-Técotl, Perturbative degrees of freedom in loop quantum gravity: anisotropies. Class. Quantum Gravity 23, 3491–3516 (2006). gr-qc/0511058

    Article  MATH  ADS  Google Scholar 

  25. M. Bojowald, D. Cartin, and G. Khanna, Lattice refining loop quantum cosmology, anisotropic models and stability. Phys. Rev. D 76, 064018 (2007). arXiv:0704.1137

    Article  ADS  MathSciNet  Google Scholar 

  26. O. Brodbeck, On symmetric gauge fields for arbitrary gauge and symmetry groups. Helv. Phys. Acta 69, 321–324 (1996). gr-qc/9610024

    MATH  MathSciNet  Google Scholar 

  27. D. Cartin and G. Khanna, Absence of pre-classical solutions in Bianchi I loop quantum cosmology. Phys. Rev. Lett. 94, 111302 (2005). gr-qc/0501016

    Article  ADS  Google Scholar 

  28. D. Cartin and G. Khanna, Wave functions for the Schwarschild black hole interior. Phys. Rev. D 73, 104009 (2006). gr-qc/0602025

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Cartin, G. Khanna, and M. Bojowald, Generating function techniques for loop quantum cosmology. Class. Quantum Gravity 21, 4495–4509 (2004). gr-qc/0405126

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. G. Date, Pre-classical solutions of the vacuum Bianchi I loop quantum cosmology. Phys. Rev. D 72, 067301 (2005). gr-qc/0505030

    Article  ADS  MathSciNet  Google Scholar 

  31. B.S. DeWitt, Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113–1148 (1967)

    Article  MATH  ADS  Google Scholar 

  32. J. Engle, Quantum field theory and its symmetry reduction. Class. Quantum Gravity 23, 2861–2893 (2006). gr-qc/0511107

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. J. Engle, On the physical interpretation of states in loop quantum cosmology. Class. Quantum Gravity 24, 5777–5802 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  35. A. Heslot, Quantum mechanics as a classical theory. Phys. Rev. D 31, 1341–1348 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  36. V. Husain and O. Winkler, On singularity resolution in quantum gravity. Phys. Rev. D 69, 084016 (2004). gr-qc/0312094

    Article  ADS  MathSciNet  Google Scholar 

  37. T.W.B. Kibble, Geometrization of quantum mechanics. Commun. Math. Phys. 65, 189–201 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1. Wiley, New York (1963)

    MATH  Google Scholar 

  39. T. Koslowski, A cosmological sector in loop quantum gravity. arXiv:0711.1098

  40. T. Koslowski, Reduction of a quantum theory. gr-qc/0612138

  41. L. Modesto, Loop quantum black hole. Class. Quantum Gravity 23, 5587–5601 (2006). gr-qc/0509078

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. K. Noui, A. Perez, and K. Vandersloot, On the physical Hilbert space of loop quantum cosmology. Phys. Rev. D 71, 044025 (2005). gr-qc/0411039

    Article  ADS  MathSciNet  Google Scholar 

  43. C. Rovelli, Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  44. A. Skirzewski, Effective equations of motion for quantum systems. PhD thesis, Humboldt-Universität Berlin (2006)

    Google Scholar 

  45. T. Thiemann, Introduction to Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  46. D.L. Wiltshire, An introduction to quantum cosmology. In: Robson, B., Visvanathan, N., Woolcock, W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473–531. World Scientific, Singapore (1996). gr-qc/0101003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bojowald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bojowald, M. (2009). Mathematical Issues in Loop Quantum Cosmology. In: Sidoravičius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2810-5_6

Download citation

Publish with us

Policies and ethics