Skip to main content

Topological Strings on Local Curves

  • Conference paper
Book cover New Trends in Mathematical Physics

Abstract

We review some perturbative and nonperturbative aspects of topological string theory on the Calabi–Yau manifolds X p =O(−p) O(p−2)→ℙ1. These are exactly solvable models of topological string theory which exhibit a nontrivial yet simple phase structure, and have a phase transition in the universality class of pure two-dimensional gravity. They don’t have conventional mirror description, but a mirror B model can be formulated in terms of recursion relations on a spectral curve typical of matrix model theory. This makes it possible to calculate nonperturbative, spacetime instanton effects in a reliable way, and in particular to characterize the large order behavior of string perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aganagic, A. Klemm, M. Mariño, and C. Vafa, The topological vertex. Commun. Math. Phys. 254, 425 (2005). arXiv:hep-th/0305132

    Article  MATH  ADS  Google Scholar 

  2. M. Aganagic, H. Ooguri, N. Saulina, and C. Vafa, Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings. Nucl. Phys. B 715, 304 (2005). arXiv:hep-th/0411280

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. P.S. Aspinwall, B.R. Greene, and D.R. Morrison, Measuring small distances in N=2 sigma models. Nucl. Phys. B 420, 184 (1994). arXiv:hep-th/9311042

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994). arXiv:hep-th/9309140

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. V. Bouchard, A. Klemm, M. Marino, and S. Pasquetti, Remodeling the B-model. arXiv:0709.1453 [hep-th]

  6. J. Bryan and R. Pandharipande, The local Gromov-Witten theory of curves. arXiv:math.AG/0411037

  7. P. Candelas, X.C. De La Ossa, P.S. Green, and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359, 21 (1991)

    Article  MATH  ADS  Google Scholar 

  8. N. Caporaso, L. Griguolo, M. Mariño, S. Pasquetti, and D. Seminara, Phase transitions, double-scaling limit, and topological strings. Phys. Rev. D 75, 046004 (2007). arXiv:hep-th/0606120

    Article  ADS  MathSciNet  Google Scholar 

  9. M.J. Crescimanno and W. Taylor, Large N phases of chiral QCD in two-dimensions. Nucl. Phys. B 437, 3 (1995). arXiv:hep-th/9408115

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. F. David, Phases of the large N matrix model and nonperturbative effects In 2-D gravity. Nucl. Phys. B 348, 507 (1991)

    Article  ADS  Google Scholar 

  11. F. David, Nonperturbative effects in two-dimensional quantum gravity. In: Gross, D.J., Piran, T., Weinberg, S. (eds.) Two-dimensional Quantum Gravity and Random Surfaces. Springer, Berlin (1992)

    Google Scholar 

  12. P. Di Francesco, P. Ginsparg, and J. Zinn-Justin, 2-D gravity and random matrices. Phys. Rep. 254, 1 (1995). arXiv:hep-th/9306153

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Dijkgraaf and C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories. Nucl. Phys. B 644, 3 (2002). arXiv:hep-th/0206255

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. M.R. Douglas and V.A. Kazakov, Large N phase transition in continuum QCD in two-dimensions. Phys. Lett. B 319, 219 (1993). arXiv:hep-th/9305047

    Article  ADS  Google Scholar 

  15. B. Eynard, All orders asymptotic expansion of large partitions. J. Stat. Mech. 0807, P07023 (2008). arXiv:0804.0381 [math-ph]]

    Article  MathSciNet  Google Scholar 

  16. B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion. arXiv:math-ph/0702045

  17. B. Forbes and M. Jinzenji, J functions, non-nef toric varieties and equivariant local mirror symmetry of curves. arXiv:math.ag/0603728

  18. B. Forbes and M. Jinzenji, Local mirror symmetry of curves: Yukawa couplings and genus 1. arXiv:math.ag/0609016

  19. D. Ghoshal and C. Vafa, c=1 String as the topological theory of the conifold. Nucl. Phys. B 453, 121 (1995). arXiv:hep-th/9506122

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. I.P. Goulden, D.M. Jackson, and R. Vakil, The Gromov-Witten potential of a point, Hurwitz numbers, and Hodge integrals. Proc. Lond. Math. Soc., III 83(3), 563–581 (2001). arXiv:math.AG/9910004

    Article  MATH  MathSciNet  Google Scholar 

  21. M.X. Huang, A. Klemm, and S. Quackenbush, Topological string theory on compact Calabi-Yau: modularity and boundary conditions. arXiv:hep-th/0612125

  22. A. Klemm and E. Zaslow, Local mirror symmetry at higher genus. arXiv:hep-th/9906046

  23. I.K. Kostov, M. Staudacher, and T. Wynter, Complex matrix models and statistics of branched coverings of 2D surfaces. Commun. Math. Phys. 191, 283 (1998). arXiv:hep-th/9703189

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. J.C. Le Guillou and J. Zinn-Justin (eds.), Large Order Behavior of Perturbation Theory. North-Holland, Amsterdam (1990)

    Google Scholar 

  25. J.M. Maldacena, G.W. Moore, N. Seiberg, and D. Shih, Exact vs. semiclassical target space of the minimal string. J. High Energy Phys. 0410, 020 (2004) arXiv:hep-th/0408039

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Mariño, Open string amplitudes and large order behavior in topological string theory. J. High Energy Phys. 0803, 060 (2008) arXiv:hep-th/0612127

    Article  ADS  Google Scholar 

  27. M. Mariño, R. Schiappa, and M. Weiss, Nonperturbative effects and the large-order behavior of matrix models and topological strings. arXiv:0711.1954 [hep-th]

  28. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831 (2004). arXiv:hep-th/0206161

    MathSciNet  Google Scholar 

  29. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions. arXiv:hep-th/0306238

  30. H. Ooguri, A. Strominger, and C. Vafa, Black hole attractors and the topological string. Phys. Rev. D 70, 106007 (2004). arXiv:hep-th/0405146

    Article  ADS  MathSciNet  Google Scholar 

  31. S.H. Shenker, The strength of nonperturbative effects in string theory. In: Álvarez, O., Marinari, E., Windey, P. (eds.) Random Surfaces and Quantum Gravity. Plenum, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Mariño .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Mariño, M. (2009). Topological Strings on Local Curves. In: Sidoravičius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2810-5_31

Download citation

Publish with us

Policies and ethics