Skip to main content

Diffusion and Mixing in Fluid Flow: A Review

  • Conference paper
  • 1717 Accesses

Abstract

This note is a review of a series of results on the interaction between diffusion and fluid flow that have been presented by the author at the International Congress in Mathematical Physics in Rio, 2006. The main object of study is the enhancement of diffusive mixing by a fast incompressible flow. Due to its physical relevance, the subject has been studied in detail from different angles. Here, we describe some of the recent work which combines PDE, functional analysis and dynamical systems theory by trying to establish links between diffusion enhancement and mixing properties inherent to the dynamical system generated by the flow. The proofs are based on a general criterion for the decay of the semigroup generated by an operator of the form Γ+iAL with a negative unbounded self-adjoint operator Γ, a self-adjoint operator L, and parameter A≫1. In particular, they employ the RAGE theorem describing evolution of a quantum state belonging to the continuous spectral subspace of the Hamiltonian (related to a classical theorem of Wiener on Fourier transforms of measures).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.V. Anosov, The additive functional homology equation that is connected with an ergodic rotation of the circles (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 37, 1259–1274 (1973)

    MATH  MathSciNet  Google Scholar 

  2. H. Berestycki, F. Hamel, and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena. Commun. Pure Appl. Math. 253, 451–480 (2005)

    MATH  MathSciNet  Google Scholar 

  3. P. Constantin, A. Kiselev, and L. Ryzhik, Quenching of flames by fluid advection. Commun. Pure Appl. Math. 54, 1320–1342 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Constantin, A. Kiselev, L. Ryzhik, and A. Zlatos, Diffusion and mixing in fluid flow. Ann. Math. 168, 643–674 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. I.P. Cornfeld, S.V. Fomin, and Ya.G. Sinai, Ergodic Theory. Springer, New York (1982)

    MATH  Google Scholar 

  6. H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schrödinger Operators. Springer, Berlin (1987)

    MATH  Google Scholar 

  7. A. Fannjiang and L. Wolowski, Noise induced dissipation in Lebesgue-measure preserving maps on d-dimensional torus. J. Stat. Phys. 113, 335–378 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Fannjiang, S. Nonnenmacher, and L. Wolowski, Dissipation time and decay of correlations. Nonlinearity 17, 1481–1508 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. A. Fannjiang, A. Kiselev, and L. Ryzhik, Quenching of reaction by cellular flows. GAFA 16, 40–69 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Fayad, Weak mixing for reparameterized linear flows on the torus. Ergod. Theory Dyn. Syst. 22, 187–201 (2002)

    MATH  MathSciNet  Google Scholar 

  11. B. Fayad, Smooth mixing flows with purely continuous spectra. Duke Math. J. 132, 191–392 (2006)

    Article  MathSciNet  Google Scholar 

  12. B. Franke, Integral inequalities for the fundamental solutions of diffusions on manifolds with divergence-free drift. Math. Z. 246, 373–403 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Freidlin, Functional Integration and Partial Differential Equations. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  14. M. Freidlin, Reaction-diffusion in incompressible fluid: Asymptotic problems. J. Differ. Equ. 179, 44–96 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Freidlin and A. Wentzell, Random perturbations of Hamiltonian systems. Memoir AMS, (1994)

    Google Scholar 

  16. M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  17. Y. Kifer, On the principal eigenvalue in a singular perturbation problem with hyperbolic limit points and circles. J. Differ. Equ. 37, 108–139 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Kifer, Random Perturbations of Dynamical Systems. Birkhäuser Boston, Boston (1988)

    MATH  Google Scholar 

  19. Y. Kifer, Principal eigenvalues, topological pressure, and stochastic stability of equilibrium states. Isr. J. Math. 70, 1–47 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Y. Kifer, Random Perturbations of Dynamical Systems: A New Approach. Lectures in Appl. Math., vol. 27. AMS, Providence (1991)

    Google Scholar 

  21. A. Kiselev and A. Zlatoš, Quenching of combustion by shear flows. Duke Math. J. 132, 49–72 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Kiselev, R. Shterenberg, and A. Zlatos, Relaxation enhancement by time-periodic flows. Indiana Univ. Math. J. 57, 2137–2152 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. A.N. Kolmogorov, On dynamical systems with an integral invariant on the torus (Russian). Dokl. Akad. Nauk SSSR (N.S.) 93, 763–766 (1953)

    MATH  MathSciNet  Google Scholar 

  24. A. Majda and P. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep. 314, 237–574 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  25. J.-M. Roquejoffre, Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders. Ann. Inst. Henri Poincaré Anal. Non-Linéaire 14, 499–552 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. M.D. Šklover, Classical dynamical systems on the torus with continuous spectrum. Izv. Vuzov 10, 113–124 (1967)

    Google Scholar 

  27. J. von Neumann, Zur operatorenmethode in der classichen mechanik. Ann. Math. (2) 33, 587–642 (1932)

    Article  Google Scholar 

  28. J. von Neumann and E.P. Wigner, Über merkwürdige diskrete Eigenwerte. Z. Phys. 30, 465–467 (1929)

    Google Scholar 

  29. A. Zlatoš, Quenching and propagation of combustion without ignition temperature cutoff. Nonlinearity 18, 1463–1475 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. A. Zlatoš, Diffusion in fluid flow: Dissipation enhancement by flows in 2D. Preprint arXiv:math/0701123

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kiselev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kiselev, A. (2009). Diffusion and Mixing in Fluid Flow: A Review. In: Sidoravičius, V. (eds) New Trends in Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2810-5_24

Download citation

Publish with us

Policies and ethics